引言
當前,基於射頻原理的無線通信產品俯拾即是,其數量的增長速度也非常驚人。從蜂窩電話和無線PDA,到支持WiFi的筆記本電腦、藍牙耳機、射頻身份標籤、無線醫療設備和ZigBee傳感器,射頻設備的市場規模在飛速擴大。僅從今年來看,全球製造並銷售的蜂窩電話將高達8.5億多隻。
要想進行全面的生產測試並提高測試產能,測試工程師們必須要理解射頻基本原理,清楚測試的內容,並懂得選用最適合 的儀器完成這些測試工作。問題是,大多數從事低頻應用(工作頻率在1MHz以下)的工程師不太熟悉高頻的應用特點。
射頻術語:您必須掌握的「工作語言」
忘掉電壓,射頻工程師常用功率
射頻信號的強度千差萬別。隨著信號在自由空間的傳播,單位功率將隨著距離的平方成比例降低,功率的變化常用分貝(dB)來表示。
採用分貝進行功率測量也大大簡化了計算過程。增益
和損耗都按分貝為單位進行加減。因此,乘法操作簡化為加法操作。dB的形式化定義為:
dB = 10 log (Pout/Pin)
分貝dB是一個相對的值。另一個相關的單位是毫瓦分貝dBm,它是相對於1mW的絕對功率。圖1給出了dBm的值及其相應的瓦特數,其中還給出了行動電話的發射機發射功率參考範圍,以及靈敏接收機所能檢測到的最低信號功率。圖2給出的等式定義了室溫下射頻信號的理論熱噪聲。由於射頻信號通過空氣的傳輸以及受到大氣幹擾和其它信號的幹擾,到達接收機端的信號電平可能變得非常低。接收機常常需要檢測低於0.1pW的信號(或者低於微伏的信號電平)。
Noise Floor:本底噪聲
常見問題不再是輸入阻抗,而是傳輸線的阻抗失配
在低頻情況下,我們在電路上傳輸電壓的目標是實現最小的衰減幅度。其中,最有效的電路是輸入阻抗高而輸出阻抗低的電路。對於射頻應用,線纜的長度可能只有波長的四分之一,我們必須把信號傳輸當成波來理解。如果波受到阻斷,部分波信號就會發生反射。射頻傳輸的目標就是無損耗地將所有的功率傳給負載。任何功率的反射就意味著傳給負載功率的損失。因此,失配是一個關鍵的參數。電路元件和傳輸線之間的任何阻抗差異都會引起反射和功率損耗。
在射頻應用中,傳輸線一般都採用同軸電纜,它們相對於電路板和電路板內的微帶線路而言都是外部組件。這些組件具有自己的特徵阻抗。傳輸線的特徵阻抗取決於導線的幾何結構、導線的屬性以及包裹或隔離導線的絕緣體。對於射頻應用來說,傳輸線的特徵阻抗以及各組件的輸入和輸出阻抗通常採用50歐姆或75歐姆。50歐姆的阻抗用於優化系統內的功率傳輸,而75歐姆的阻抗用於實現最小的衰減,例如有線電視網系統。大部分射頻無線傳輸系統都是針對功率傳輸而進行設計優化的,因此特徵阻抗都是50歐姆。
為了儘量減少反射,無線測試與測量應用中的射頻線纜和組件都是基於50歐姆特徵阻抗而設計的。相反,當阻抗匹配時,就實現了最佳的功率傳輸。