體細胞基因編輯可改善杜氏肌營養不良模型中的骨骼肌與心肌衰竭
作者:
小柯機器人發布時間:2020/2/10 9:16:24
德國慕尼黑工業大學C. Kupatt、A. Moretti等研究人員合作利用體細胞基因編輯改善了豬和人杜氏肌營養不良症模型中的骨骼與心肌功能衰竭。相關論文於2020年1月27日在線發表於國際學術期刊《自然—醫學》。
研究人員表示,DMD基因(編碼抗肌萎縮蛋白)的移碼突變會導致杜氏肌營養不良症(DMD),從而引起患者出現終末肌肉和心力衰竭。通過序列特異性核酸酶進行的體細胞基因編輯為恢復DMD閱讀框提供了新的選擇,從而表達縮短但功能強大的抗肌萎縮蛋白。
研究人員在缺少DMD外顯子52(DMDΔ52)的DMD豬模型以及相應的患者來源的多能幹細胞模型中驗證了這種方法。在DMDΔ52豬中,肌內注射血清型9的腺相關病毒載體,該載體帶有一個intein-split Cas9和一對靶向外顯子51兩側序列的嚮導RNA(AAV9-Cas9-gE51),從而誘導了縮短的抗肌萎縮蛋白(DMDΔ51–52)的表達並改善了骨骼肌功能。此外,AAV9-Cas9-gE51的全身應用導致抗肌萎縮蛋白在肌肉中的廣泛表達(包括橫隔膜和心臟),從而延長了存活時間並減少了心律失常的易感性。類似地,在缺乏DMDΔ52患者的誘導性多能幹細胞來源的成肌細胞和心肌細胞中,AAV6-Cas9-g51介導的外顯子51切除可恢復抗肌萎縮蛋白的表達並減輕骨骼肌肌管的形成,以及異常的心肌Ca2+信號和心律失常的易感性。在這些轉化模型中,Cas9介導的外顯子切除能夠改善DMD的病理,並為這種嚴重疾病患者的新治療方法鋪平了道路。
附:英文原文
Title: Somatic gene editing ameliorates skeletal and cardiac muscle failure in pig and human models of Duchenne muscular dystrophy
Author: A. Moretti, L. Fonteyne, F. Giesert, P. Hoppmann, A. B. Meier, T. Bozoglu, A. Baehr, C. M. Schneider, D. Sinnecker, K. Klett, T. Frhlich, F. Abdel Rahman, T. Haufe, S. Sun, V. Jurisch, B. Kessler, R. Hinkel, R. Dirschinger, E. Martens, C. Jilek, A. Graf, S. Krebs, G. Santamaria, M. Kurome, V. Zakhartchenko, B. Campbell, K. Voelse, A. Wolf, T. Ziegler, S. Reichert, S. Lee, F. Flenkenthaler, T. Dorn, I. Jeremias, H. Blum, A. Dendorfer, A. Schnieke, S. Krause, M. C. Walter, N. Klymiuk, K. L. Laugwitz, E. Wolf, W. Wurst, C. Kupatt
Issue&Volume: 2020-01-27
Abstract: Frameshift mutations in the DMD gene, encoding dystrophin, cause Duchenne muscular dystrophy (DMD), leading to terminal muscle and heart failure in patients. Somatic gene editing by sequence-specific nucleases offers new options for restoring the DMD reading frame, resulting in expression of a shortened but largely functional dystrophin protein. Here, we validated this approach in a pig model of DMD lacking exon 52 of DMD (DMDΔ52), as well as in a corresponding patient-derived induced pluripotent stem cell model. In DMDΔ52 pigs1, intramuscular injection of adeno-associated viral vectors of serotype 9 carrying an intein-split Cas9 (ref. 2) and a pair of guide RNAs targeting sequences flanking exon 51 (AAV9-Cas9-gE51) induced expression of a shortened dystrophin (DMDΔ51–52) and improved skeletal muscle function. Moreover, systemic application of AAV9-Cas9-gE51 led to widespread dystrophin expression in muscle, including diaphragm and heart, prolonging survival and reducing arrhythmogenic vulnerability. Similarly, in induced pluripotent stem cell-derived myoblasts and cardiomyocytes of a patient lacking DMDΔ52, AAV6-Cas9-g51-mediated excision of exon 51 restored dystrophin expression and amelioreate skeletal myotube formation as well as abnormal cardiomyocyte Ca2+ handling and arrhythmogenic susceptibility. The ability of Cas9-mediated exon excision to improve DMD pathology in these translational models paves the way for new treatment approaches in patients with this devastating disease.
DOI: 10.1038/s41591-019-0738-2
Source: https://www.nature.com/articles/s41591-019-0738-2