《生物設計與製造》:3D列印用於骨再生的具有分層多孔結構的羥基磷灰石/磷酸三鈣支架

2021-02-25 浙大學報英文版

1. Basu B (2017) Natural bone and tooth: structure and properties. In: Basu B, Ghosh S (eds) Biomaterials for musculoskeletal regeneration. Springer, Singapore, pp 45–85
2. Wang Q et al (2017) Artificial periosteum in bone defect repair—a review. Chin Chem Lett 28(9):1801–1807
3. Yu JC et al (1996) An experimental study of the effects of craniofacial growth on the long-term positional stability of microfixation. J Craniofacial Surg 7(1):64–68
4. Stelnicki EJ, Hoffman W (1998) Intracranial migration of microplates versus wires in neonatal pigs after frontal advancement. J Craniofacial Surg 9(1):60–64
5. Macchetta A, Turner IG, Bowen CR (2009) Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method. Acta Biomater 5(4):1319–1327
6. Miao X et al (2008) Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly (lactic-co-glycolic acid). Acta Biomater 4(3):638–645
7. Ho CMB, Ng SH, Yoon Y-J (2015) A review on 3D printed bioimplants. Int J Precis Eng Manuf 16(5):1035–1046
8. Bose S, Vahabzadeh S, Bandyopadhyay A (2013) Bone tissue engineering using 3D printing. Mater Today 16(12):496–504
9. Rengier F et al (2010) 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg 5(4):335–341
10. Kim S-S et al (2006) Poly (lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials 27(8):1399–1409
11. Sato M et al (2006) Increased osteoblast functions on undoped and yttrium-doped nanocrystalline hydroxyapatite coatings on titanium. Biomaterials 27(11):2358–2369
12. Shao H et al (2017) Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect. Biofabrication 9(2):025003
13. Xu S et al (2017) Effects of HAp and TCP in constructing tissue engineering scaffolds for bone repair. J Mater Chem B 5(30):6110–6118
14. Cao H, Kuboyama N (2010) A biodegradable porous composite scaffold of PGA/β-TCP for bone tissue engineering. Bone 46(2):386–395
15. Rakovsky A et al (2014) β-TCP-polylactide composite scaffolds with high strength and enhanced permeability prepared by a modified salt leaching method. J Mech Behav Biomed Mater 32:89–98
16. Nakahira A et al (2005) Fabrication of porous hydroxyapatite using hydrothermal hot pressing and post-sintering. J Am Ceram Soc 88(5):1334–1336
17. Zhou S et al (2011) Fabrication of hydroxyapatite/ethylene-vinyl acetate/polyamide 66 composite scaffolds by the injection-molding method. Polym Plast Technol Eng 50(10):1047–1054
18. Bose S et al (2003) Pore size and pore volume effects on alumina and TCP ceramic scaffolds. Mater Sci Eng, C 23(4):479–486
19. Tarafder S et al (2015) SrO-and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model. J Biomed Mater Res Part B Appl Biomater 103(3):679–690
20. Tarafder S et al (2013) Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering. J Tissue Eng Regen Med 7(8):631–641
21. Zeng Y et al (2018) 3D printing of hydroxyapatite scaffolds with good mechanical and biocompatible properties by digital light processing. J Mater Sci 53(9):6291–6301
22. Huang W et al (2013) Fabrication of HA/β-TCP scaffolds based on micro-syringe extrusion system. Rapid Prototyp J 19(5):319–326
23. Nyberg E et al (2017) Comparison of 3D-printed poly-ɛcaprolactone scaffolds functionalized with tricalcium phosphate, hydroxyapatite, bio-oss, or decellularized bone matrix. Tissue Eng
Part A 23(11–12):503–514
24. Leukers B et al (2005) Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J Mater Sci Mater Med 16(12):1121–1124
25. Cox SC et al (2015) 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Mater Sci Eng, C 47:237–247
26. Wu C et al (2015) Graphene-oxide-modified β-tricalcium phosphate bioceramics stimulate in vitro and in vivo osteogenesis. Carbon 93:116–129
27. Kon E et al (2000) Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res
49(3):328–337
28. Kim J et al (2012) Rapid-prototyped PLGA/β-TCP/hydroxyapatite nanocomposite scaffolds in a rabbit femoral defect model. Biofabrication 4(2):025003
29. Witek L (2015) Extrusion-based, three-dimensional printing of calcium-phosphate scaffolds. Dissertation of Oklahoma State University
30. Diogo GS et al (2014) Manufacture of β-TCP/alginate scaffolds through a Fab@ home model for application in bone tissue engineering. Biofabrication 6(2):025001
31. He F et al (2017) Fabrication of β-tricalcium phosphate composite ceramic sphere-based scaffolds with hierarchical pore structure for bone regeneration. Biofabrication 9(2):025005
32. Castilho M et al (2014) Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects. Biofabrication 6(1):015006
33. Zhang Y et al (2017) 3D-printed bioceramic scaffolds with antibacterial and osteogenic activity. Biofabrication 9(2):025037
34. Trombetta R et al (2017) 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery. Ann Biomed Eng 45(1):23–44
35. Castilho M et al (2015) Fabrication of individual alginate-TCP scaffolds for bone tissue engineering by means of powder printing. Biofabrication 7(1):015004
36. Nadeem D et al (2015) Three-dimensional CaP/gelatin lattice scaffolds with integrated osteoinductive surface topographies for bone tissue engineering. Biofabrication 7(1):015005
37. Di Luca A et al (2016) Toward mimicking the bone structure: design of novel hierarchical scaffolds with a tailored radial porosity gradient. Biofabrication 8(4):045007
38. Yang Y et al (2018) Recent progress in biomimetic additive manufacturing technology: from materials to functional structures. Adv Mater 30(36):1706539

39. Holmes B et al (2016) A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair. Nanotechnology
27(6):064001
40. Salerno A et al (2017) Synthetic scaffolds with full pore interconnectivity for bone regeneration prepared by supercritical foaming using advanced biofunctional plasticizers. Biofabrication 9(3):035002
41. Yang J-Z et al (2015) Structure design and manufacturing of layered bioceramic scaffolds for load-bearing bone reconstruction. Biomed Mater 10(4):045006
42. Yang Y et al (2018) 3D-printed biomimetic super-hydrophobic structure for microdroplet manipulation and oil/water separation. Adv Mater 30(9):1704912
43. Li X, Chen Y (2017) Micro-scale feature fabrication using immersed surface accumulation. J Manuf Process 28:531–540
44. Li X et al (2018) Mask video projection based stereolithography with continuous resin flow to build digital models in minutes. In: ASME 2018 13th international manufacturing science and engineering conference. American Society of Mechanical Engineers
45. Zhou C, Chen Y, Waltz RA (2009) Optimized mask image projection for solid freeform fabrication. In: ASME 2009 international design engineering technical conferences and computers
and information in engineering conference. American Society of Mechanical Engineers
46. Li X et al (2018) 3D printing temporary crown and bridge by temperature controlled mask image projection stereolithography. Procedia Manuf 26:1023–1033
47. Zhou C et al (2013) Digital material fabrication using maskimage-projection-based stereolithography. Rapid Prototyp J19(3):153–165
48. Song X et al (2015) Ceramic fabrication using mask-image-projection-based stereolithography integrated with tape-casting. J Manuf Process 20:456–464
49. Song X et al (2017) Piezoelectric component fabrication using projection-based stereolithography of barium titanate ceramic suspensions. Rapid Prototyp J 23(1):44–53
50. Frisch U, Hasslacher B, Pomeau Y (1986) Lattice-gas automata for the Navier–Stokes equation. Phys Rev Lett 56(14):1505
51. Zissi S et al (1996) Stereolithography and microtechniques. Microsyst Technol 2(2):97–102
52. Jacobs PF (1992) Rapid prototyping & manufacturing: fundamentals of stereolithography. Society of Manufacturing Engineers, Dearborn
53. Griffith ML, Halloran JW (1993) Freeform fabrication of ceramics via stereolithography. J Am Ceram Soc 79(10):2601–2608
54. Song X et al (2017) Porous structure fabrication using a stereolithography-based sugar foaming method. J Manuf Sci Eng 139(3):031015
55. Hamad AJ (2017) Size and shape effect of specimen on the compressive strength of HPLWFC reinforced with glass fibres. J King Saud Univ Eng Sci 29(4):373–380
56. Miller RG Jr (1997) Beyond ANOVA: basics of applied statistics. Chapman and Hall, Boca Raton
57. Jordan MM et al (2008) Influence of firing temperature and mineralogical composition on bending strength and porosity of ceramic tile bodies. Appl Clay Sci 42(1–2):266–271
58. Deng XG et al (2016) Effects of firing temperature on the microstructures and properties of porous mullite ceramics prepared by foam-gelcasting. Adv Appl Ceram 115(4):204–209
59. Rice RW (1993) Comparison of stress concentration versus minimum solid area based mechanical property-porosity relations. J Mater Sci 28(8):2187–2190
60. Heunisch A, Dellert A, Roosen A (2010) Effect of powder, binder and process parameters on anisotropic shrinkage in tape cast ceramic products. J Eur Ceram Soc 30(16):3397–3406
61. Boccaccini AR, Trusty PA (1998) In situ characterization of the shrinkage behavior of ceramic powder compacts during sintering by using heating microscopy. Mater Charact 41(4):109–121
62. Hollister SJ (2009) Scaffold design and manufacturing: from concept to clinic. Adv Mater 21(32–33):3330–3342
63. Kwok T-H et al (2017) Mass customization: reuse of digital slicing for additive manufacturing. J Comput Inf Sci Eng 17(2):021009
64. Xu K, Kwok T-H, Chen Y (2016) A reverse compensation framework for shape deformation in additive manufacturing. In: ASME 2016 11th international manufacturing science and engineering
conference. American Society of Mechanical Engineers
65. Leung Y-S et al (2019) Challenges and status on design and computation for emerging additive manufacturing technologies. J Comput Inf Sci Eng 19(2):021013
66. Chung I-H et al (2009) Stem cell property of postmigratory cranialneural crest cells and their utility in alveolar bone regeneration and tooth development. Stem Cells 27(4):866–877
67. Leucht P et al (2008) Embryonic origin and Hox status determine progenitor cell fate during adult bone regeneration. Development 135(17):2845–2854

相關焦點

  • 3D列印用於骨再生的具有分層多孔結構的羥基磷灰石/磷酸三鈣支架
    3D列印支架近年來受到了相當大的關注,因為它們為骨細胞組織的再生提供了合適的環境,並且可以個性化定製形狀。在諸多挑戰中,材料成分和幾何結構對支架的性能有重大影響。羥基磷灰石和磷酸三鈣(HA / TCP)作為天然骨骼和牙齒的主要成分,具有良好的生物學特性,被廣泛用於骨支架的製造中。人們已經研究了許多製造方法來試圖獲得具有微孔結構的HA / TCP支架,從而促使細胞生長和營養運輸。
  • 生物功能化的3D列印多孔複合支架促進兔骨缺損再生
    在這種情況下,通過控制孔隙率、硬度和成骨信號等參數進行設計和製造特定的合成骨植入物可作為潛在的骨替代品。來自印度理工學院坎普爾分校的Ashok Kumar教授課題組將聚三亞甲基碳酸酯(PTMC)和生物陶瓷共混製作的多孔3D複合支架作為骨移植材料,在支架中填充了大孔低溫凝膠(CG)、並使用骨形態發生蛋白(BMP)和唑來膦酸(ZA)等骨活性因子對支架進行了功能化處理,最後在兩種不同的臨界大小的兔骨缺損模型上進行了體外和體內的性能評估。首先研究人員進行了支架的製備和表徵。
  • 全能的3D列印骨修復材料被成功開發
    3D列印組織工程骨支架具有高保真度、複雜多孔結構、優秀的生物相容性,可以快速精準的滿足患者需求,越來越多的研究者開始使用3D列印技術進行骨組織修復。微擠出式生物3D列印操作簡單、高效、成本相對低,是3D列印骨修復支架的可靠工藝技術。
  • 中科院科學家3D列印生物陶瓷支架:可用於骨腫瘤治療
    圖1. 3D列印純生物陶瓷支架(左)與生物活性陶瓷/氧化石墨烯複合支架(右)。在體外骨腫瘤細胞殺傷率達到90%(見圖2)。在小鼠體內植入該功能化的支架並進行光照後,有效地抑制了裸鼠皮下腫瘤生長,而對照組腫瘤體積隨天數持續增大(見圖3)。
  • 研究人員利用3D列印製造微型樂高式「骨磚」
    此外,3d列印技術的進步使得針對患者的可植入結構的設計更具可擴展性,在某些情況下可以在醫院現場生產。因此,組裝這些複雜的組織不再需要專門的設備,這反過來減少了與種植生產有關的準備時間。 然而,一個理想的支持系統的開發已經被證明是難以實現的,這也是為什麼該技術在醫院環境中沒有廣泛應用的原因之一。
  • 用於三維細胞培養蓬鬆深度互連的羥基磷灰石纖維支架
    三維支架生物材料:含有多孔結構,可以為細胞提供豐富的分布空間並有利於氧氣和營養物質的輸送;三維生物材料在一定程度上模擬了細胞外基質的拓撲結構和生物功能,從而誘導骨的修復和再生。背景:目前生物支架材料緻密的微觀結構和局限細胞生長微環境是限制其在骨組織修復應用上的兩大難點。
  • 行業|需要骨修復的患者越來越多,人工骨會是他們的救星嗎?
    1986年,研究學者製造出了與天然骨骼類似的材料羥基磷灰石(羥基化磷酸鈣)製成的人造骨骼以及由可被組織自然吸收和替代的磷酸三鈣製成的人造骨骼,這兩種人工骨的出現,刺激了人工骨材料的高速發展[2]。但是,由於這些材料仍然太硬,無法加工和調整以用於移植。所以各研究學者紛紛在此基礎上進行改良和研究。
  • 含鎂多孔支架材料的體外抗菌活性和生物相容性
    不同種類的快速成型系統因所用成形材料不同,成形原理和系統特點也各有不同,但基本原理都是「分層製造,逐層疊加」。背景:將多聚物材料與生物陶瓷材料複合製成有機/無機複合三維支架材料,可賦予支架骨傳導所必需的理化特性,同時強化材料的力學性能,但大多數骨替代材料無法預防缺損部位的感染。研究發現由於鎂的降解可產生局部鹼性環境,使鎂具有一定的抗菌活性。
  • 對3D列印技術的原理及其在骨科的應用發展進行概述
    增材製造技術是一種以數字模型文件為基礎,應用粉末狀金屬或塑料等可黏合材料,通過"分層製造、逐層疊加"的方式來構造物體的技術,它包括SLA、SLS、3DP、FDM等。 為了方便理解和推廣,媒體將增材製造技術又稱為3D列印技術。增材製造技術最早主要用於設計原型的製造,因此又稱為快速原型技術。 30多年來,3D列印一般被用來通過數據軟體製造物理模型。
  • 科學家們使用膠原蛋白和牛骨來推進生物3D列印研究
    中國3D列印網2月12日訊,李清博士和一組科學家最近完成了一項研究,研究羥基磷灰石和膠原蛋白在用作骨替代物的生物3D列印支架時的相容性。 3D列印是修復骨創傷和缺陷的未來技術,因為它可以將生物相容性材料和活組織操縱到刺激細胞骨生長所必需的有機幾何形狀中,骨是多孔的,3D列印可以複製這種孔隙。
  • 前沿I 陶瓷3D列印在醫療領域的應用
    此類工藝加工周期長、成本高,且複雜的幾何外形和內部連通孔結構較難成型,限制了陶瓷在一些領域中的應用。 3D列印技術的出現為上述問題的解決提供了新的可能。目前,陶瓷3D列印技術主要包括光固化成型、數字光處理、熔融沉積成型、噴墨列印、選擇性雷射熔融和分層實體製造等。
  • 3D列印技術在骨科的研究及應用進展
    作為一種新型的快速成型及快速製造技術,越來越為人們所關注,同時也受到醫學領域學者的青睞。3D列印技術在醫學領域已獲得應用,它主要包含以下幾點:(1)1∶1的實體模型;(2)無生物活性的材料;(3)具有生物活性的組織細胞及完整生命功能的器官。3D列印技術在骨科的應用走在前列,骨科領域中第1、2點已得到廣泛應用,並且在第3點應用也有相關報導。
  • 堅固的磷酸鎂基3D列印植入物在馬缺損模型中誘導骨骼再生
    摘要:骨組織工程學中的重要挑戰之一是開發具有適當機械和生物學特性的可生物降解的骨替代物,以治療較大的缺陷和形狀複雜的缺陷。最近,與基於磷酸鈣的標準陶瓷相比,摻有諸如鍶(Sr2 +)等生物活性離子的磷酸鎂(MgP)已顯示出顯著增強了骨骼形成。
  • 基於3D列印和電解的凝膠鑄造多孔鉭支架
    近年來,鉭以其高強度、延展性、耐腐蝕性和良好的生物相容性,作為一種新型材料在生物醫學領域,尤其是骨科和牙科領域受到越來越多的關注。此外,多孔鉭具有低彈性模量、高表面摩擦性能和良好的骨整合性能。多孔鉭的製備多種多樣。
  • 生物陶瓷之活性陶瓷材料篇
    、磷等元素;或含有能與人體組織發生鍵合的羥基(OH-)等基團,它們的表面同人體組織可通過鍵的結合達到完全的親和;或者部分或完全被人體吸收和取代,因此,生物陶瓷可以作為身體組成滲入或取代的支架和空位填補體,但這類生物活性陶瓷在吸收的過程中強度嚴重下降,尤其是可完全吸收的生物陶瓷更為嚴重,所以,必須認真考慮機械設計因素,使身體組織同生物活性陶瓷在癒合的中間階段不至於破裂。
  • Nature子刊|Mikos院士萬字長文詳論:骨組織工程材料設計策略
    雖然所有的材料設計都必須滿足生物相容性等基本要求,但其他性能可能被認為或多或少是關鍵的,這取決於具體的應用。這些特性可以定製以滿足特定的臨床需求。例如,用於大型承重缺陷的結構的力學性能被認為是骨再生的關鍵,因此可以選擇具有最佳力學性能的複合支架。機械上弱得多的可注射水凝膠,可以通過微創方法傳遞,可能是再生一個小的, 非承重缺陷的首選。
  • 生物陶瓷材料應用於頜面部骨缺損修復與再生的研究進展
    生物陶瓷材料是一類具有良好生物相容性、較強的抗壓縮性、耐腐蝕性及抗微生物活性等優點的陶瓷材料或金屬氧化物,其在骨組織再生中可作為骨替代物為骨缺損的修復提供穩定的支架結構,與骨源性細胞和生長因子聯合應用為頜面部骨組織再生提供了新的策略。本文就生物陶瓷材料在頜骨缺損修復中的應用研究進展做一綜述。
  • 浙江工業大學劉雲峰等:用於生物醫學的新型多孔 Ti6Al4V 植入物的仿生設計和 3D 列印
    中文摘要:目 的:多孔結構植入體在骨科修復領域具有極大的應用前景。本研究提出了一種在結構與力學性能方面更貼近人體骨組織的多孔 Ti6Al4V 植入體。 創新點:針對骨組織的結構特點,提出了「分層設計」理念,以期更好地模擬皮質骨和松質骨的結構。除了結構相似以外,這種植入體在力學性能和結構穩定性方面同樣具有優勢。
  • 絲素蛋白|再生修復醫學-仿生骨
    迄今為止,自然界生物具有的功能比任何人造機械都優越得多,仿生學就是要在工程學上實現並有效地應用生物功能的一門學科。例如關於信息接受(感覺功能)、信息傳遞(神經功能)、自動控制系統等,這種生物體的結構與功能給與機械設計等方面很大啟發。
  • 3D列印功能性生物陶瓷支架取得系列進展
    傳統3D列印生物陶瓷支架主要用於骨組織工程前期,中國科學院上海矽酸鹽研究所研究員吳成鐵與常江帶領的研究團隊在3D列印生物陶瓷支架用於骨-軟骨再生及骨腫瘤治療方面取得了系列研究進展(Advanced Functional Materials 2017, 27:1703117-1703130; Advanced Science 2017, 4:1700401-1700409; Biomaterials 2017, 135:85-95