量子計算與量子信息(NC2010)【Ch0-1.4】筆記

2021-02-21 樂植桃數
(NC2010) Quantum computation and quantum information【Ch0-1.4】Foreword

量子計算還是很有意思的. 這學期按要求開始看它, 順便就整理一下期末重點. 前面幾章大多數是介紹性的, 所以也就當看有趣的故事大概也就可以過去了(不行就之後再回來補上). 第1章只整理了前4節的部分內容. 1.5是相關實踐檢驗的, 粗略看了一下覺得可能和上帝擲骰子嗎比較像. 1.6節關於量子信息理論的簡介還是等後面遇到了量子信息理論的時候再加討論. 但就是把這東西(推送)當筆記本了還真挺不錯的...

0. Preface

This book provides an introduction to the main ideas and techniques of quantum computation and quantum information. Our purpose in this book is, therefore, twofold.

Introduce the background material in CS, math, physicsDevelop in detail the central results of quantum computation and quantum informationStructure of the book

The book is divided into 3 parts.

Broad overview of the main ideas and results of QC and QI.historical development, fundamental conceptsmore detailed understanding of the backgroundfundamental notions of quantum mechanics and CSfundamental elements needed to perform QC, elementary operations which may be used to develop more sophisticated applications of QCquantum Fourier transform and the quantum search algorithmdesign principles and criteria for good physical implementations of quantum computersQI: what it is, how information is represented and communicated using quantum states.properties of quantum noise and quantum operations formalismdistance measures for QI, which allow us to make quantitatively precise what similar meansquantum error-correcting codes, used to ensure quantum computations correctly done, threshold theoreminformation-theoretic concept of entropyinformation-carrying properties of quantum states and quantum communication channels, ...Nomenclature and notationA positive definite operator 

Quantum bit, or qubit for short, is described as mathematical objects with specific properties, though this can be realized as actual physical systems.

As a classical bit has a state - either 0 or 1, a qubit has a state. 

It is also possible to form linear combinations of states, called superpositions:

where 

The particular states 

Remarkably, we cannot examine a qubit to determine its quantum state, i.e., the values of 

Generally, a qubit's state is a unit vector in a two-dimensional complex vector space.

In contrast to our 'common sense', a qubit can exist in a continuum of states between 

Example. a qubit in the state 

An electron can exist in either 'ground' or 'excited' states, which we'll call 

Since 

where 

Actually, 

Figure 1.3. Bloch sphere representation of a qubit. Metionably, this contains only the case that the coefficient of 

Though paradoxically, there are infinite points on the unit sphere, information represented by a qubit cannot be infinite. Recall that measurement of a qubit will give only either 0 or 1. Furthermore, measurement changes the state of a qubit, collapsing it from its superposition of 

Example. If the measurement of 

1.2.1 Multiple qubits

Suppose we have 2 qubits. These two qubits form a qubit system, which has 4 computational basis states, denoted 

Similar to the case for a single bit, the measurement result 

Explain. Measuring the first qubit, we get 0 with probability 

Combine them to get the previous probability distribution result.

Example. An important two-qubit state is the Bell state or known as EPR pair,

Note that this means if we measure the first and obtain 0 (with 1/2 probability), then the post-measurement state is 

More generally, consider a system of 

1.3 Quantum Computation

A quantum computer is built from a quantum circuit containing wires and elementary quantum gates to carry around and manipulate the quantum information. In this section, we describe several simple quantum gates, as well as examples illustrating their application.

1.3.1 Single qubit gates

The only non-trivial member of single-bit logic gates is the NOT gate, whose operation is defined by its truth table, in which 

Similarly, the quantum NOT gate acts linearly, i.e.,

Though, linear behavior is a general property of quantum mechanics and well-motivated empirically.

So, we may simply express the quantum NOT gate in matrix form,

and express the quantum state as 

More generally, if we want any single-qubit gate (linear), one can always use a 2-by-2 matrix to express it. But, as constrained by normalization condition, actually, any single-qubit gate is isomorphic to a unitary 2-by-2 matrix 

Two other important single qubit gates are

The 

Visualization of the Hadamard gate. Rotate 90 degrees alone 

It turns out that any single-qubit gate can be decomposed into 3 rotations.

Theorem. Any 2-by-2 unitary matrix may be decomposed as

A proof is given later in section 4.2.

1.3.2 Multiple qubit gates

An important theoretical result in classical gates is that any function on bits can be computed from the composition of NAND gates alone, which is thus known as a universal gate. By contrast, the XOR gate alone, even together with NOT is not universal.

The prototypical multi-qubit quantum logic gate is the controlled-NOT or CNOT gate for short. It takes two input qubits, known as control qubit and the target qubit, respectively.

Visualization of two-bit gates. Left are classical gates, and the right is the CNOT gate and its matrix representation. (In the order of 

The action of the CNOT gate is described as follows. If the control qubit is set to 0, the target qubit is left alone. If the control qubit is set to 1, then the target qubit is flipped. Or, another way to describe it is as a generalization of the classical XOR gate, as 

While noticing that unitary quantum gates are always invertible, thus for classical NAND and XORgate, they cannot be understood as unitary gates.

Of course, there are many interesting quantum gates other than CNOT, but in the sense of prototype, we have the following theorem.

Theorem. Any multiple-qubit logic gate may be composed of CNOT and single-qubit gates. The proof is given in section 4.5, which is the quantum parallel of the universality of the NAND gate.

1.3.3 Measurements in bases other than the computational basis

Actually, quantum mechanics allows somewhat more versatility in the class of measurements. Instead of choosing 

It turns out that it is possible to treat them as though they were computational basis states. Naturally, measuring result in '+' with probability 

More generally, given any basis states 

1.3.4 Quantum circuits

A wire in the quantum circuit does not necessarily correspond to a physical wire; it may correspond instead to the passage of time or perhaps to a physical particle such as a photon travels through space.

Above is a simple but useful task which swaps the states of the two qubits. Remember that we can perceive the CNOT operation as modulo 2 addition.

Swapping two qubits, and an equivalent schematic symbol notation

There are a few features allowed in classical circuits that are not usually present in quantum circuits.

No loops allowed. We say the circuit is acyclic.FANIN, i.e., joining wires together, is not allowed (Since the OR operator is not unitary)FANOUT, i.e., spreading copies of a bit, is not allowed. (It is not possible in quantum mechanics!)

Also, we can define a controlled-

Suppose 

A measuring operator is denoted as a 'meter' and outputs a classical bit 

Measuring a qubit.1.3.5 Qubit copying circuit?

Consider the task of copying a qubit in the manner we copy classical bit using the CNOT gate.

Attempting to copy a qubit.

We actually get different result from

In fact it is impossible to copy an unknown qubit.

To understand why this is not a copy, remember that measuring one qubit only obtains part of its state information. After measuring the first cubit, the second copy should not be interfered with and contain originally much more information. While, in this case, the second copy lost its information. Therefore this is not a copy.

1.3.6 Example: Bell statesBell states

Bell states, as well as known as EPR states and EPR pairs is denoted as

1.3.7 Example: quantum teleportation

Assume Alice and Bob are agents going to work in different areas and want to share some secret information encoded in qubits after their separation. Here is how this can be done by quantum teleportation. Before departure, they together generated an EPR pair, each taking one qubit of the EPR pair. Then, when Alice wants to send a secret information 

Quantum circuit for teleporting a qubit. The top two lines are Alice's system.

She first interacts 

States at each timestamp is listed as (take 

There's a lot to mention in this process.

One cannot send information faster than light. Since in this setting, we need a traditional transmission, and this prevents transmitting faster than light. Without the information Alice gives, Bob actually got no useful information.Actually, this does not copy but does teleport a qubit. Since Alice only remains measured traditional bits.1.4 Quantum Algorithms

What class of computations can be performed using quantum circuits, and how does that class compare with those computations done by classical logical circuits? Is there any task that a quantum computer may perform better than a classical computer?

1.4.1 Classical computations on a quantum computer

Can we simulate a classical logic circuit using a quantum circuit? Yes. Though, one must be careful when designing circuits since quantum logic gates are unitary, inherently reversible, whereas many classical logic gates such as the NAND gate are irreversible.

Example. Toffoli gate, or known as CCNOT gate, is a reversible gate that has 3 inputs and 3 outputs. Two control bits are unaffected by the action of the Toffoli gate. In the third bit, the target bit is flipped if both control bits are set to 1. The inverse is itself.The NAND gate thus can be used to simulated by setting 
The FANOUT operation is simulated by setting 

What if the classical computer is non-deterministic, that has the ability to generate random bits to be used in the computation. Obviously, it is easy for a quantum computer to do this. Only applying a Hadamard gate is enough.

1.4.2 Quantum parallelism

Quantum parallelism is a fundamental feature of many quantum algorithms. It allows quantum computers to evaluate a function 

Suppose 

This procedure can easily be generalized to functions on an arbitrary number of bits, by using a general operation called Hadamard transform.

1.4.3 Deutsch's algorithm

This shows how quantum circuits can outperform classical ones by implementing Deutsch's algorithm.

Simply analysis shows that

So only one evaluation of 

1.4.4 The Deutsch-Jozsa algorithm

Example. Deutsch's problem. Alice, selects a number 

In the classical case, Alice needs up to 

and

Then, interferes terms,

which gives

Carefully we examine the result in 

To sum up, measure 

1.4.5 Quantum algorithms summarized

Broadly speaking, there are 3 classes of quantum algorithms that provide an advantage over known classical algorithms.

Algorithms based upon quantum versions of the Fourier transformQuantum search algorithms

相關焦點

  • 量子計算發展歷程_量子計算與量子信息 計算部分 - CSDN
    經典計算機使用電晶體作為比特(bit),以電晶體的開閉狀態分別表示 0 和 1。量子計算機使用兩態量子系統比如電子的自旋、光的偏振等作為量子比特(qubit),由於量子態疊加原理能夠同時表示 0 和 1。量子比特較經典比特具有更多信息,且呈冪指數級別增加。
  • 《量子信息辯證唯物主義與信息量子熱力學》
    《量子信息辯證唯物主義與信息量子熱力學》一書是馬客思考2043同志20多年來在工作之餘對物理學哲學問題辛勤思考和積極探索的科研成果彙編。20多年來馬客思考2043一直試圖想搞清楚「信息本質、量子本質、運動本質、時空本質、物質本質、能量本質、生命本質、意識本質、靈魂本質、實體本質、現象本質、現實實在本質、虛擬實在本質、數字本質、科幻本質、超驗本質、技術本質和哲學科學本質」等基本範疇和「宇宙起源、生命起源、意識起源、黑洞信息悖論、量子糾纏現象和超光速現象」等基本問題。
  • 量子計算及量子信息研討會|會議通知
    01 量子計算及量子信息研討會量子計算與量子信息近年的發展受到普遍的關注,中科院物理所量子計算研究中心將於2020年12月17-18日舉辦「量子計算及量子信息研討會」02 會議日程03 量子計算研究中心簡介量子計算研究中心(Quantum Computation Research Center)是中國科學院物理研究所為推動量子科技發展、加強量子科技布局而成立的專門從事量子計算的科研部門
  • 量子計算及量子信息研討會 | 會議通知
    01 量子計算及量子信息研討會量子計算與量子信息近年的發展受到普遍的關注,中科院物理所量子計算研究中心將於2020年12月17-18日舉辦「量子計算及量子信息研討會」,會議將邀請國內活躍的學者共同探討這個方向的前沿問題,並就研究現狀與挑戰展開交流和討論。
  • 中國學者刷新多比特量子糾纏態世界紀錄!
    而多比特量子糾纏態的實驗製備是衡量量子計算平臺控制能力的關鍵標誌,全球範圍內競爭尤為激烈。VeUednc在工業界,谷歌、IBM、微軟、英特爾、華為、阿里等高科技公司都投入大量資源,IBM在這方面發聲較多,今年1月,IBM發布全球首個獨立商用量子計算機IBM Q。學界,包括中國、美國、英國、歐洲多國都非常重視量子計算的研究。
  • 什麼是量子計算?
    2019年9月27日,在瑞士日內瓦會議上,ITU-T決定設立FG-QIT4N焦點組,計劃由來自中國方面的專家擔任主席,來自美國、俄羅斯的專家擔任聯合主席,對量子增強型網絡技術、量子信息技術驅動的新型服務及應用開展標準化預研工作。目前,量子計算作為QIT的重要技術領域,焦點組的WG1工作組對其開展了預標準化研究和套路討論,詳情如表1所示。
  • 量子信息理論揭示了量子糾纏與熱力學、多體理論、量子計算的聯繫
    量子信息理論的最新進展揭示了糾纏與熱力學、多體理論、量子計算及其與宏觀性的聯繫。量子物理學始於馬克斯·普朗克的「絕望行為」,他假設能量是量子化的,以便解釋黑體輻射的強度分布。大約25年後,沃納·海森堡、馬克斯·伯恩、帕斯誇爾·喬丹、埃爾文·施洛德和保羅·狄拉克寫下了量子理論的全部定律。
  • 到底什麼是量子計算
    量子計算有很多方式,其中廣泛使用的模型是量子線路,也就是通過在量子比特上執行一系列的邏輯操作來實現量子計算,如圖1所示。這些邏輯操作包括:量子比特的初始化、量子態的么正變換以及對量子比特信息的讀取。4.1 量子糾錯碼量子糾錯碼是經典糾錯碼在量子信息的推廣。首先來了解什麼是經典糾錯碼。最簡單的糾錯碼是重複碼(repetition code),也就是將要保護的信息重複存儲(圖2)。
  • 北京量子院明年攻堅量子計算與通信等4個研究方向
    新京報快訊(記者 張璐)記者今天獲悉,北京量子信息科學研究院(簡稱北京量子院)今年將完成整體研究方向布局,明年將重點在量子物態科學、量子計算與通信、量子材料與器件、量子精密測量4個方面進行攻堅。 今天,「2019年量子物理與量子信息科學前沿論壇」在北京量子院開幕。
  • 從頭開始學習量子計算
    對於現代計算機而言,通過控制電晶體電壓的高低電平,從而決定一個數據到底是「1」還是「0」,採用「1」或「0」的二進位數據模式,俗稱經典比特,其在工作時將所有數據排列為一個比特序列
  • 我國在超冷原子量子計算與量子模擬領域取得重要進展
    基於量子力學的基本原理,量子計算和模擬被認為是後摩爾時代推動高速信息處理的顛覆性技術,有望解決諸如高溫超導機制模擬、密碼破解等重大科學和技術問題。量子糾纏是量子計算的核心資源,量子計算的能力將隨糾纏比特數目的增長呈指數增長。因而,大規模糾纏態的製備、測量和相干操控是該研究領域的核心問題。
  • 量子計算怎麼投?一文讀懂量子計算的未來
    經典計算機使用電晶體作為比特(bit),以電晶體的開閉狀態分別表示 0 和 1。量子計算機使用兩態量子系統比如電子的自旋、光的偏振等作為量子比特(qubit),由於量子態疊加原理能夠同時表示 0 和 1。量子比特較經典比特具有更多信息,且呈冪指數級別增加。
  • 這次是量子計算——「高溫量子」在1開氏度以上...
    )上發表了一篇論文,證明了在高於1開氏度下,能夠成功控制「高溫」量子位(量子計算的基本單位)。在此之前,量子計算機被證明只能在毫開爾文的溫度範圍內工作——只比絕對零度高出零點幾度。現在,隨著對高溫量子的研究,QuTech與英特爾的合作已經證明了一個假設,即矽自旋量子位有可能在略高於當前量子系統運行溫度中工作,從而向量子計算的可擴展性邁出了一步。利用矽自旋量子推進量子計算,讓英特爾能夠利用在先進封裝和互連技術方面的專業性,為實現量子實用性開闢一條可擴展的道路。
  • 量子通信技術核心——量子計算算法
    量子計算和量子計算機是現代通信科學的重大議題,量子的疊加性、糾纏性和相干性為量子計算提供一種創新的計算方法,在對信息的運算、保存和處理方面遠超過經典運算。量子計算機是利用微觀粒子狀態來進行存儲和處理信息的計算工具。其基本原理是通過物理手段製備可操作的量子態,並利用量子態的疊加性、糾纏性和相干性等量子力學的特性進行信息的運算、保存和處理操作,從本質上改變了傳統的計算理念。  量子通信是量子理論與信息理論的交叉學科,是指利用量子的糾纏態實現信息傳遞的通訊方式。
  • 走進研究院 | 量子計算與量子模擬
    編者按:本文是36氪「邊界計劃」的轉載內容,來自物理學報.2018, 67(12): 120301(點擊連結查看);作者範桁,中國科學院物理所研究員,固態量子信息與計算實驗室主任,Q03組長;36氪經授權轉載。
  • 周報:亞馬遜推量子計算服務Braket;​美國增加量子信息研發預算
    美國政府計劃將AI和量子信息技術研發預算增加約30%美國白宮提出了2021年的非國防預算,其中包括將AI和量子計算方面的支出增加約30%。●技術動態●科學家發現使量子態壽命延長1萬倍的方法芝加哥大學普利茲克分子工程學院的一組科學家,宣布發現了一種簡單的修改方法,就可以使量子系統保持運轉,即保持「相干」的時間比以前延長達1萬倍。
  • 4個國家量子調控與量子信息定向項目出爐,分別由誰牽頭?
    6月18日,科技部網站發布消息稱,國家重點研發計劃「量子調控與量子信息」重點專項2019年擬支持4個定向委託項目,國撥經費總概算1.1億元。分別為北京大學牽頭的「自旋超導等新型關聯體系的量子態」、中科院物理所牽頭的「小量子體系」、上海交通大學牽頭的「馬約拉納零能模的構築與操控」、中國科學技術大學牽頭的「光學量子計算」。
  • 前途無量的量子計算
    文/李陽量子計算(Quantum Computing)是一種遵循量子力學規律調控量子信息單元進行計算的新型計算模式,即利用量子疊加和糾纏等物理特性,以微觀粒子構成的量子比特為基本單元,通過量子態的受控演化實現計算處理。
  • 技經觀察 | 量子計算VS量子密鑰分發技術,全球量子競賽展開
    文章介紹了量子計算對傳統加密方法和安全通信的威脅,量子密鑰分發方法(QKD)及其在加密安全方面的優勢,以及各國在量子信息科學領域的進展和競賽。文章指出,中國快速發展的基於量子的安全通信鏈路可能有損於美國情報機構,並助其在中美有關太空活動的國際協定中獲取戰略利益,但基於中國在量子數據安全方面的領先地位,中美在相關基礎研究領域的合作將有益於美國了解最新技術。
  • 「量子計算」量子計算在私營部門的發展
    導致態度轉變的裡程碑包括加拿大D-Wave公司於2015年上市的第一臺商用量子計算機,以及IBM於2016年推出的第一臺可公開訪問的基於雲的量子計算機(參見「IBM宣布『計算量子時代的開始』」,「今日物理在線」,2016年5月4日)。同年,一些離子阱系統的錯誤率下降到0.1%以下。