研究揭示全固態合金金屬電池的微觀機理

2021-01-08 科學網

研究揭示全固態合金金屬電池的微觀機理

作者:

小柯機器人

發布時間:2021/1/7 13:26:20

中科院化學研究所文銳團隊從調節均勻鋰沉澱和柔性固體電解質界面演變方面揭示了全固態合金金屬電池的微觀機理。相關成果於2020年12月31日發表在國際知名學術期刊《美國化學會志》。

與合金陽極相匹配的硫化物基固體電解質(SSEs)被認為是克服鋰(Li)陽極瓶頸的全固態電池(ASSBs)的理想選擇。然而,對SSE合金陽極上的動態電化學過程的理解仍然很難。

該文中,研究人員利用原位原子力顯微鏡揭示了鋰電極上鋰沉澱的塊狀形成和堆積行為,揭示了納米級鋰沉積/溶解的形態演化。此外,二維Li-indium(In)合金片層和In電極上的均勻固體電解質界面層揭示了合金陽極微觀調控的析出機制。柔性褶皺結構的SEI殼進一步實現了循環時的電極保護和內部Li容納,從而闡明了SEI殼對循環行為的功能影響。

這種對形態演化和動力學機制的原位跟蹤,有助於深入理解和優化合金基ASSBs。

附:英文原文

Title: Micromechanism in All-Solid-State Alloy-Metal Batteries: Regulating Homogeneous Lithium Precipitation and Flexible Solid Electrolyte Interphase Evolution

Author: Jing Wan, Yue-Xian Song, Wan-Ping Chen, Hui-Juan Guo, Yang Shi, Yu-Jie Guo, Ji-Lei Shi, Yu-Guo Guo, Fei-Fei Jia, Fu-Yi Wang, Rui Wen, Li-Jun Wan

Issue&Volume: December 31, 2020

Abstract: Sulfide-based solid-state electrolytes (SSEs) matched with alloy anodes are considered as promising candidates for application in all-solid-state batteries (ASSBs) to overcome the bottlenecks of the lithium (Li) anode. However, an understanding of the dynamic electrochemical processes on alloy anode in SSE is still elusive. Herein, in situ atomic force microscopy gives insights into the block-formation and stack-accumulation behaviors of Li precipitation on an Li electrode, uncovering the morphological evolution of nanoscale Li deposition/dissolution in ASSBs. Furthermore, two-dimensional Li–indium (In) alloy lamellae and the homogeneous solid electrolyte interphase (SEI) shell on the In electrode reveal the precipitation mechanism microscopically regulated by the alloy anode. The flexible and wrinkle-structure SEI shell further enables the electrode protection and inner Li accommodation upon cycles, elucidating the functional influences of SEI shell on the cycling behaviors. Such on-site tracking of the morphological evolution and dynamic mechanism provide an in-depth understanding and thus benefit the optimizations of alloy-based ASSBs.

DOI: 10.1021/jacs.0c10121

Source: https://pubs.acs.org/doi/10.1021/jacs.0c10121

 

相關焦點

  • 黃建宇組原位揭示鋰枝晶生長機理,助力固態電池應用
    原標題:黃建宇組原位揭示鋰枝晶生長機理,助力固態電池應用來源:知社學術圈鋰離子二次電池以其高能量密度已在可攜式電子設備領域得到了廣泛應用,但是依然不能滿足電動汽車和電網等大容量儲能裝置對高能量密度的需求。
  • 進展|全固態鋰電池關鍵固態電解質材料與金屬鋰負極的熱穩定性研究
    然而,金屬鋰與液態電解質會發生反應,且會隨著電池循環產生鋰枝晶,造成電池較低的循環壽命和較差的安全性,這嚴重阻礙了金屬鋰電池的大規模應用。全固態電池將液態電解質替換成了不可燃的具有一定剛性的固態電解質,且一些固態電解質表現出對金屬鋰良好的兼容性,因而全固態電池被認為有望同時實現高能量密度和高安全性。然而,目前針對全固態電池安全性的研究工作相對較少,對全固態電池的安全性的認識也不夠深入。
  • 兼具液態/固態電池優點 科學家發明室溫工作的全液態金屬電池
    來源:cnBeta.COM液態電池和固態電池各有優缺點,不過來自德克薩斯大學奧斯汀分校的研究團隊聲稱找到了同時兼顧這兩種電池優點的全新電池。科研團隊稱這是首款可以在室溫環境下正常工作的全液態金屬電池,而且各項性能明顯優於傳統鋰離子電池。
  • 兼具液態/固態電池優點 科學家發明室溫工作的全液態金屬電池
    本文轉自【cnBeta.COM】;液態電池和固態電池各有優缺點,不過來自德克薩斯大學奧斯汀分校的研究團隊聲稱找到了同時兼顧這兩種電池優點的全新電池。科研團隊稱這是首款可以在室溫環境下正常工作的全液態金屬電池,而且各項性能明顯優於傳統鋰離子電池。
  • 最新研究表明,現在可以實現最高能量密度的全固態電池
    採用複合氫化物的高能量密度全固態鋰金屬電池。圖片來源:Sangryun Kim和Shin-ichi Orimo 東北大學和高能促進劑研究組織的科學家開發了一種新型的複合氫化物鋰超離子導體,該導體可能導致迄今為止的全固態電池具有最高的能量密度。研究人員說,這種新材料通過設計氫簇(複雜陰離子)的結構而獲得,對鋰金屬具有很高的穩定性,這將使其成為全固態電池的最終負極材料。
  • 全固態鋰金屬電池近期研究成果及國內電池供應商布局
    鋰金屬電池是下一代最具前景的高能量密度存儲設備之一。然而,鋰金屬在循環過程中產生的枝晶可刺破隔膜,引起電池短路甚至爆炸。採用固態電解質代替易燃的液態電解質可從根本上解除鋰金屬電池的安全隱患。固態鋰電池是一類使用固體電極材料和固體電解質材料的鋰電池。與液態鋰電池,混合固液鋰電池不同,固態鋰電池的電池單體中不含有任何液體電解質、液態溶劑及液態添加劑。
  • 固態電池什麼時候可以商用_全固態電池電極材料
    固態電池什麼時候可以商用_全固態電池電極材料 網絡整理 發表於 2020-03-19 10:11:29   固態電池什麼時候可以商用   固態電池被普遍視為下一代電池技術
  • 美國UT Austin餘桂華教授AM:室溫全液態金屬電池界面化學研究
    成果簡介 基於對易熔合金界面化學的研究,德州大學奧斯汀分校(UT Austin)的餘桂華教授課題組首次實現了室溫下工作的液態金屬全電池,該電池採用鈉鉀合金做負極(熔點:零下13攝氏度),鎵基的易熔合金做正極
  • 關於全固態鋰離子電池的淺析
    其關鍵主要包括製備高室溫電導率和電化學穩定性的固態電解質以及適用於全固態鋰離子電池的高能量電極材料、改善電極/固態電解質界面相容性。該材料具有優秀的綜合性能,室溫離子導電率為2.3x10-6S/cm,電化學窗口為5.5V(vs.Li/Li+),熱穩定性較好,並且與LiCoO2,、LiMn2O4等正極以及金屬鋰、鋰合金等負極相容性良好。LiPON薄膜離子電導率的大小取決於薄膜材料中非晶態結構和N的含量,N含量的增加可以提高離子電導率。普遍認為,LiPON是全固態薄膜電池的標準電解質材料,並且已經得到了商業化應用。
  • 全球首款20℃室溫全液態金屬電池誕生:集固態液態電池優勢於...
    德克薩斯大學奧斯汀分校科克雷爾工程學院的研究人員開發了一種室溫全液態金屬電池,創下了目前液態金屬電池的最低工作溫度記錄。該電池結合了現有固態液態電池的許多優點,同時消除了它們的主要缺點並節省了能源,擁有廣闊的應用前景。
  • 全固態鋰離子電池正極界面的研究進展
    全固態鋰離子電池由於採用耐高溫的固態電解質代替常規有機液態電解質,故安全性好於傳統鋰離子電池。同時,由於固態電解質的機械性能遠優於電解液,所以其理論上可以有效阻擋金屬鋰負極在充放電過程中產生的枝晶,使得全固態鋰離子電池可以採用金屬負極,進一步提高電池的能量密度。 然而, 固態電解質的本徵電化學性能及其與正、負極的界面穩定性等多個方面的問題限制了全固態電池的實際應用。
  • 德克薩斯大學研究出室溫液態金屬電池兼備固態和液態電池優點
    目前市面上,大多數電池都是由固態電極(如可攜式電子產品的鋰離子電池)或液態電極(包括智能電網的流動電池)組成。為此,德克薩斯大學的研究人員發明了一種他們稱之為「室溫全液態金屬電池」的東西,把液態和固態電池兩種電池的優點都囊括其中。
  • 全新液態金屬電池問世:兼具固態和液態電池優點
    7月7日,據外媒報導,德克薩斯大學奧斯汀分校的研究人員表示,他們發明了一種兼具液態電池和固態電池優點的新型電池,這是首個能夠在室溫下工作的液態金屬電池,其性能遠超鋰離子電池。普通的液態金屬電池的電極是由液態金屬製成的,與固態電池相比其好處是不會形成析鋰而破壞電池。
  • 新能源汽車電池展望:固態鋰離子電池、鋰硫電池、鋰空氣電池?
    1 固態鋰離子電池固態鋰離子電池從 20 世紀 50 年代就開始研究,但受當 時材料技術、製造技術限制,其電性能和安全性不能達到實用化要求。智能電子產品、電動汽車產業要求配套電池性能不斷提升,使固態鋰離子電池成為近年來研究的重點。固態鋰離子 電池安全性好、比能量高(可達400 Wh/kg 以上)、循環壽命長、 工作溫度範圍寬、電化學窗口寬(可達 5 V)。
  • 固態電池研究綜述(2020.7-2020.11)
    此外,基於上述研究進展,團隊從超分子化學和界面構效關係的角度加深硫化物固態電池的關鍵科學問題理解,並且為理性設計高能量密度固態鋰金屬電池和解決其技術瓶頸提供了建設性方案。  其中,固-固界面的電子轉移和離子傳輸對電池性能有著重要作用。然而,固態電池界面研究仍缺乏直接的觀察和分析技術,明確的機制尚不明確,這大大限制了固態電池的應用前景。直接觀測和分析複雜的固態界面對ASSBs的研究至關重要。
  • Nature Energy:超1000圈的全固態鋰金屬電池
    Ag-C層(不是鋰金屬哦!)全固態鋰金屬電池的構成圖1a給出了這種全固態鋰金屬的結構示意圖,圖1b的SEM表明了電池的各個部分接觸非常緊密,圖1c給出了硫銀鍺礦型的固態電解質Li6PS5Cl和其他的固態電解質的電導率隨溫度的變化曲線,表明了本文使用的電解質具有高的電導率。圖1d是這種電解質的XRD圖。
  • 研究揭示二氧化鈦表面光催化反應微觀機理
    銳鈦礦結構的二氧化鈦(TiO2)表面催化活性和微觀反應機理,由中國科學技術大學合肥微尺度物質科學國家實驗室單分子科學研究團隊揭示,論文發表在近日出版的
  • 上大《MSEA》用CT給3D列印金屬「診療」—揭示孔洞缺陷形成機理
    在TC4合金SLM成形過程中,受到包括雷射能量的吸收和傳輸、材料的快速熔化和凝固、微觀組織演化、熔池的流動、材料的蒸發等因素的影響,導致成形熱力學和動力學十分複雜,因而在構件內部會形成孔洞、裂紋、雜質等缺陷,這些缺陷嚴重降低了成形件綜合力學性能,限制了雷射列印TC4合金的廣泛應用。
  • 上大《MSEA》用CT給3D列印金屬診療揭示孔洞缺陷形成機理
    TC4合金具有質輕、比強度高等優點,通過雷射選區熔化(SLM)技術製備的TC4金屬零部件被廣泛應用於航空航天、生物醫療等領域。在TC4合金SLM成形過程中,受到包括雷射能量的吸收和傳輸、材料的快速熔化和凝固、微觀組織演化、熔池的流動、材料的蒸發等因素的影響,導致成形熱力學和動力學十分複雜,因而在構件內部會形成孔洞、裂紋、雜質等缺陷,這些缺陷嚴重降低了成形件綜合力學性能,限制了雷射列印TC4合金的廣泛應用。
  • 上海矽酸鹽所在固態電池界面激活研究中取得重要進展
    存在的問題,上海矽酸鹽所李馳麟研究員帶領的團隊提出針對固態電池界面鈍化層的脆化-碎化機制,通過利用表面張力可調的近室溫液態金屬,對石榴石型固態電解質表面進行刷塗清洗改性,在電解質長時間暴露空氣和鈍化層大量累積的情況下仍然顯著提升了鋰金屬對其表界面的浸潤性。