全固態鋰離子電池正極界面的研究進展

2021-01-07 電子發燒友
全固態鋰離子電池正極界面的研究進展

鋰電聯盟會長 發表於 2021-01-06 14:34:23

第一部分:前言統鋰離子電池的有機液態電解質在高溫下極易起火,造成電池熱失控,具有較大安全隱患;同時,由於金屬鋰負極在電解液中極易產生枝晶,刺穿隔膜引起電池內短路,所以基於有機電解液的傳統鋰離子電池不能採用金屬鋰作為負極,限制了電池能量密度的進一步提升。

全固態鋰離子電池由於採用耐高溫的固態電解質代替常規有機液態電解質,故安全性好於傳統鋰離子電池。同時,由於固態電解質的機械性能遠優於電解液,所以其理論上可以有效阻擋金屬鋰負極在充放電過程中產生的枝晶,使得全固態鋰離子電池可以採用金屬負極,進一步提高電池的能量密度。 然而, 固態電解質的本徵電化學性能及其與正、負極的界面穩定性等多個方面的問題限制了全固態電池的實際應用。尤其在正極結構中,包括活性物質、導電劑和固態電解質等在內的不同組分之間固-固界面的穩定性限制了電池的容量發揮和循環壽命,是阻礙電池性能 提升的主要瓶頸。

其中,固-固界面化學和電化學穩定性不佳導致正極材料固-固界面不斷發生化學和電化學反應,使鋰離子在反應過程中逐漸消耗,造成電池的容量衰減;其較差的機械穩定性導致正極材料固-固界面發生剝離,減小了正極活性物質與導電劑和集流體的接觸面積,使電池阻抗大幅增加,降低了電池的容量和循環壽命;界面熱穩定性不佳導致正極材料和固態電解質在高溫下容易發生分解和元素滲透,造成電極與電解質在高溫下相變從而失效,限制了電池的裝配工藝普適性。因此,提高全固態鋰離子電池正極材料固-固界面的穩定性是提升全固態鋰離子電池電化學性能的關鍵。

然而,對全固態鋰離子電池正極材料固-固界面基礎科學問題的認識不清限制了其性能的進一步提升。本文將對全固態鋰離子電池正極界面的化學穩定性、電化學穩定性、機械穩定性和熱穩定性的機理問題進行探討,對不同影響因素和優化方法進行總結和討論,為全固態鋰離子電池的開發和應用提供參考。 第二部分:化學穩定性正極材料固-固界面極大的阻抗是造成全固態鋰離子電池室溫電化學性能不佳的主要因素,而導致正極材料固-固界面阻抗過大的重要原因是該界面的化學穩定性和電化學穩定性不佳。其中,界面的化學穩定性是指在沒有電場或磁場力的情況下,界面保持原有物理化學性質的能力。在正極材料固-固界面中,化學穩定性不佳的兩種表現形式為正極材料間元素的相互擴散和空間電荷層的形成。

正極材料間元素的相互擴散通常發生在氧化物陶瓷固態電解質和氧化物正極材料之間的界面上。Kim等利用TEM和線性EDS發現LLZO與LCO的界面在室溫下存在50~100nm的元素擴散層,如圖1a所示,其主要成分為La2CoO4。但是,由於在室溫下正極材料間元素相互擴散的速度極慢,所以很難對該擴散過程生成的產物進行表徵。

圖1 LLZO/LCO界面的TEM照片(上) 和線性EDS圖譜(下) (a);通過DFT計算得到的 LCO/LPS界面(上)和LCO/LNO/LPS界面 (下)在穩態下鋰離子濃度分布示意圖(b) 在全固態鋰離子電池中,當過渡金屬氧化物作正極、硫化物作電解質時,由於鋰離子在氧化物中的電勢比在硫化物中的高,所以鋰離子在電場力的驅動下從硫化物電解質遷移到氧化物正極材料中,直至界面兩端電勢平衡。但當達到平衡後,硫化物電解質與氧化物正極材料的界面處會形成一個類似電子導體中PN結的低鋰離子濃度區域,該區域被稱為空間電荷層。由於空間電荷層的鋰離子濃度較低,所以該區域的離子電導率較低,從而導致離子在該區域的遷移勢壘較高,造成該區域的阻抗急劇增大。如圖 1b所示,通過在LCO表面包覆LNO可以有效抑制空間電荷層的形成。

Yamamoto等利用電子全息照相對LCO和LPS之間的界面進行表徵,證實了在該界面靠近LPS側存在因鋰離子重新排布形成的低離子濃度區域,即空間電荷層。儘管研究人員意識到了空間電荷層的存在,也證實了空間電荷層是導致基於硫化物固態電解質的全固態鋰離子電池阻抗過大的主要原因,但是對於空間電荷層的化學形成過程的機理依然認識不清。同時,由於外加電勢差的作用,界面處空間電荷層的化學行為更加複雜。 第三部分:電化學穩定性與化學穩定性不同,全固態鋰離子電池正極材料固-固界面的電化學穩定性體現的是在電場力作用下,界面保持原有物理化學性質的能力。

全固態鋰離子電池正極材料固-固界面的電化學行為非常複雜,隨著固態電解質和正極材料種類的不同以及預處理方式的不同,正極材料固 ̄固界面表現出不同的電化學穩定性。本節將按電解質的種類對全固態鋰離子電池正極材料固-固界面的電化學穩定性進行介紹。 在基於硫化物固態電解質的全固態鋰離子電池中,由於硫化物固態電解質與正極材料之間的接觸面積較大,所以電解質與正極材料的界面在充放電過程中的元素相互擴散現象容易被表徵。

LPS固態電解質與LCO的界面在充放電過程中局部產生了Co3O4,且其位置並不固定,說明Co3O4是界面局部過充的產物。Auvergniot等利用掃描俄歇電子顯微鏡對LPSC固態電解質與LMO正極的界面進行表徵,如圖2a所示,發現在 LPSC表面有S、LiC、P2Sx 和Li2Sn生成,說明LPSC在充放電過程中被氧化。高電子電導率的產物是造成硫化物固態電解質與正極材料界面在充放電過程中發生電化學反應的主要原因。近期研究發現,LPS的最高價帶高於LFP,由於電荷補償機制,在充放電過程中,LPS與LFP的界面處產生電化學活性,最終使該界面變成貧鋰區,即形成了空間電荷層,隨著S-S鍵與PS4四面體不斷發生聚合反應,空間電荷層繼續生 長。此外,Sumita等發現隨著充放電過程的進行,硫化物固態電解質中S-S鍵發生可逆的生成和斷裂過程,如圖2b所示。說明在高電壓下,硫化物固態電解質具有一定的氧化能力,導致其在高電壓下的電化學穩定性很差。

圖2 LMO/LPSC/ Li-In全固態電池正極側循環前(上) 和循環後(下) 的SAM圖譜(a) ;LPS/LFP界面的電子層狀態密度 (LDOS)等高線圖(利用+U能級計算得到的結果(上), 利用HSE06雜化泛函能級計算得到的結果(下))(b)相比於硫化物固態電解質,氧化物固態電解質和正極材料的固-固界面不存在空間電荷層效應,所以氧化物固態電解質和正極材料固-固界面的電化學反應主要體現在固態電解質和正極材料界面之間的元素在充放電過程中的相互擴散現象。Kim等證明了 LCO與鈉超離子導體(NASICON)型固態電解質和LiPON的界面在充放電過程中沒有變化。

但是,研究表明LCO和LMO與Garnet型固態電解質LGLZO的界面分別在3.0和3.8V時會發生分解,而且分解產物的生成速度遠高於這兩者與LGLZO化學反應產物的生成速度,因此,LCO和LMO與LGLZO的界面在高電壓下分解的驅動力主要是電化學驅動力,故LCO和LMO正極與LGLZO的電化學穩定性不佳。 由於聚合物固態電解質(SPE)的電壓窗口較小,所以當其與電壓平臺較高的正極材料,例如LCO和LNMO匹配時,在正極材料固 ̄固界面處會發生電化學反應,導致電池容量衰減,循環性能大幅 降低。LCO/ SPE/ Li全固態電池循環10周後,容量衰減了42%,通過交流阻抗對電池在高電位下的阻抗測試發現,隨著電池在高電位的時間逐漸增加,正極側的阻抗逐漸增大,但是電解質和負極側的阻抗幾乎沒有變化,而且 LCO與SPE界面處在循環後產生了高阻抗的Co3O4相。

因此,正極材料與SPE間在高電壓下界面穩定性不佳是導致全固態電池極化過大的主要原因。 第四部分:機械穩定性在全固態鋰離子電池中,電極或固態電解質的機械穩定性不佳會造成電池的電化學性能大幅下降。其中,正極材料固-固界面機械穩定性不佳會造成全固態電池的極化大幅增加。造成該現象的主要原因是正極材料在鋰離子脫嵌時會發生相變或晶格膨脹/收縮,使正極材料的晶格大小在充放電過程中會發生變化。這種體積效應會導致正極材料與導電劑的界面在充放電過程中不斷生成—破碎,消耗可遷移的鋰離子,使電池容量下降。同時,正極材料在充放電時的體積變化會造成其與導電劑和集流體發生剝離,使電池的阻抗大幅上升。Tian和Qi對一維Newman電池基於Poisson接觸力學理論進行計算模擬,發現電極與導電劑和集流體的剝離行為發生在循環後,該行為導致電池容量的衰減。Bucci等利用力聚區模型對因正極材料體積變化導致全固態電池正極側產生裂紋的行為進行模擬,如圖3所示,證實了只有具備低斷裂能和高體積變化的正極材料才會使全固態電池正極側在充放電過程中產生裂紋並使其在正極側蔓延傳播。

圖3 正極材料有限元模型的幾何、離散化和邊界條件示意圖。電極材料顆粒嵌入了固態電解質和電子導電劑顆粒中在全固態電池正極側施加壓力可以有效抑制因正 極材料體積變化產生的裂紋蔓延現象。Janek等證實加壓可以有效抑制因LCO在充放電過程中鋰離子脫嵌產生的體積變化造成的裂紋蔓延現象,有效提升全固態電池正極材料固 ̄固界面的機械穩定性。Koerver等發現即使是採用零體積應變材料Li4Ti5O12作為全固態電池正極材料,在正極側依舊會產生裂紋。所以,在全固態電池中,提升界面的機械穩定性,改善正極材料間兼容性是未來全固態電池正極材料固-固界面的研究重點。 第五部分:熱穩定性固態電解質與正極材料混合後,分解溫度會大大低於其正常分解溫度。研究發現,熱分解過程通常在固態電解質與正極材料接觸的部分,即固-固界面處開始發生,然後逐漸向材料內部蔓延。

在對氧化物固態電解質與正極材料界面熱穩定性的研究中,Gellert等通過XRD對LATP和LMO正極材料的固-固界面的熱分解產物進行表徵,發現該界面在500℃發生了分解,同時LMO正極側產生無鋰氧化物,而在LATP電解質側產生如Li3PO4的含鋰磷酸鹽。由於這些含鋰磷酸鹽的熔點較低,故界面的分解溫度進一步降低。Inoue等發現LLZTO與石墨以及Li0.47CoO2的固-固界面在480℃ 即發生了分解。Miara等利用XRD和差示掃描量熱DSC分別對LLZO和LATP固態電解質與LCMO、LNMO和LFMO尖晶石結構正極的界面熱穩定性進行探究,如圖4所示。結果表面,LLZO與尖晶石結構正極的界面在600℃即發生分解, 而LATP與尖晶石結構正極的界面在700℃才開始分解。由於鋰元素從固態電解質向尖晶石正極材料擴散,LLZO與尖晶石正極界面在高於600℃的溫度下生成富鋰錳氧化物Li2MnO3和各種無鋰氧化物,而LATP與尖晶石正極界面在高於700℃的溫度下生成Li3PO4、各種無鋰氧化物和無鋰磷酸鹽。

圖4 不同尖晶石型正極材料與LATP, LLZO固態電解質的分解溫度以及兩兩混合後的分解溫度示意圖 關於硫化物固態電解質和正極材料間固-固界面的熱穩定性研究較少。Tsukasaki等利用TEM和DSC對75Li2S-25P2S5體系非晶態硫化物固態電解質與NCM111正極材料的界面進行表徵,發現其在200℃時產生未知晶體相。與氧化物固態電解質類似,聚合物固態電解質和正極材料固-固界面在加熱到一定的溫度時,聚合物固態電解質中的鋰鹽與正極材料和聚合物基體發生反應,生成碳酸鋰等產物,使界面 發生熱失效。Xia等通過XRD和DSC測試對PEO+LiTFSI聚合物固態電解質與LiCoO2、LiNiO2、 LiMn2O4、V2O5、V6O13和LixMnO2正極的界面熱穩定性進行研究,發現聚合物固態電解質與不同正極材料的界面在210~340℃發生了分解,分解的產物主要是Li2CO3、Li2O、LiF等含鋰化合物,金屬氧化物和未知組分的氣體。同時,充電態 下正極與聚合物固態電解質的界面分解溫度要高於放電態下界面的分解溫度。

第六部分:界面優化方法簡介由於全固態電池的工作環境溫度接近室溫,所以,相比於提升全固態鋰離子電池正極材料固-固界面的化學穩定性和熱穩定性,提升界面的電化學穩定性和機械穩定性,避免正極與固態電解質在充放電過程中發生化學反應,抑制正極顆粒在充放電過程中的破碎現象,是提升全固態電池電化學性能的關鍵。避免正極材料與固態電解質在充放電過程中發生化學反應,可以有效避免界面不斷發生分解—生成的過程,減少在該過程中消耗的鋰離子,提高全固態電池的庫倫效率和循環壽命。抑制正極顆粒在充放電過程中的破碎現象可以避免因顆粒破碎而導致的接觸不良和界面破壞,提高全固態電池的容量和循環壽命。針對這兩個問題,有效的全固態電池正極固-固界面優化方法主要有正極顆粒表面包覆、三維多孔固態電解質製備以及低熔點離子導體優化改性。

正極顆粒表面包覆是最常用的全固態鋰離子電池正極材料固-固界面的優化方法,該方法是在正極材料表面包覆一層在高電壓下穩定、離子電導率高和電子絕緣的鋰離子導體,達到隔絕正極與固態電解質,避免其在充放電時發生反應的目的。同時,這層鋰離子導體可以有效抑制正極顆粒在充放電時因體積變化導致的破碎。常見的正極表面包覆層有Li3PO4、LiNbO3以及各種鋰離子導體等, 常用的處理方式為溶膠凝膠法、噴塗法、 絲網印刷法、旋塗法、脈衝雷射沉積 (PLD)、原子層沉積(ALD)等。然而,正極顆粒表面包覆不能解決正極材料與固態電解質之間接觸面積過小的問題,所以不能用於氧化物固態電解質體系全固態電池。另外,除了PLD、ALD等濺射手段,其他包覆方式得到的產物存在包覆層不均勻的問題,主要原因是其他的包覆方式均為機械混合。而PLD、ALD等濺射手段的製備成本較高。因此,如何利用成本較低的手段對正極材料表面進行包覆是未來該方向的研究關鍵。

三維多孔固態電解質可以將正極負載在多孔固態電解質的孔內,使正極材料與固態電解質充分接觸,同時也可以抑制正極材料在充放電時發生破碎現象。製備三 維多孔固態電解質主要有流延法和模板法。相比於工藝較為複雜、成本較高的流延法,模板法工藝更簡單、成本較低。Zhang等利用模板法製備了三維多孔結構LAGP固態電解質並將高鎳三元正極材料NCM811負載在孔中,如圖5所示。與普通LAGP陶瓷相比,三維多孔結構LAGP能使全固態電池具有更高的載量、更高的容量發揮和更好的循環性能。三維多孔固態電解質優化多用於氧化物固態電解質和聚合物固態電解質體系,但是,三維多孔固態電解質無法有效提高正極材料與固態電解質固-固界面的電化學穩定性,將其與正極顆粒表面包覆相結合,是該方法未來的研究重點。

圖5 高NCM811正極材料負載量的三維結構LAGP全固態鋰離子電池示意圖在正極材料中混入低熔點離子導體,通過施加高於 離子導體熔點的溫度使離子導體融化後冷卻,均勻分布在正極材料與固態電解質之間,這種方法不僅可以避免正極材料與固態電解質接觸發生反應。而且可以提高正極材料與固態電解質之間的接觸面積, 還能改善因正極顆粒在充放電時發生破碎而導致的接觸不良的問題。Han等在LCO和 LLZO界面處加入低熔點的LCBO,如圖6所示。LCBO使LCO與固態電解質的接觸面積增大,同時減小了LCO在充放電過程中因體積變化導致的顆粒破碎對正極材料與導電劑之間接觸性能的影響。另外,利用LCBO隔絕LCO與LLZO,避免了兩者之間在充放電過程中發生反應。3方面共同作用,提升了LCO/LLZO/Li全固態鋰離子電池的電化學性能,然而,該方法的製備工藝非常複雜,成本較高。

圖6 全陶瓷正極-固態電解質界面改性示意圖第七部分:結語全固態鋰離子電池的室溫循環性能、倍率性能以及庫倫效率低下限制了其在現實中的應用。正極材料固-固界面穩定性不佳是造成全固態鋰離子電池室溫性能不佳的主要原因。目前,對於該固-固界面的優化研究已經取得了顯著的成果,但仍有許多關鍵問題亟待解決: ①正極材料與固態電解質界面潤溼性的微觀機制認識不清;②活性物質在正極材料中的比例偏低;③缺乏對界面層成分和結構的選擇以及界面層與正極、 電解質的界面相容性的研究。解決以上問題是全固態鋰離子電池正極材料固-固界面研究的重要任務。

另外,對全固態鋰離子電池正極材料固-固界面在充放電過程中物相和形貌變化的表徵手段也限制了正極材料固-固界面的優化。受限於測試精度,物相分析最常用的XRD法無法應用於正極固-固界面在充放電過程中物相變化的表徵,加大了研究難度。目前,常用的正極固-固界面變化的表徵手段僅有SEM、TEM、XPS、核磁共振(NMR)等少數幾種,且表徵效果不佳,原位表徵手段更為稀缺。所以,發展新的全固態鋰離子電池正極材料固-固界面表徵技術,特別是結合各種原位表徵手段是未來全固態鋰離子電池正極材料固-固界面研究的重要方向。 參考:李煜宇等《全固態鋰離子電池正極界面的研究進展》

原文標題:前沿!全固態鋰離子電池正極界面的研究進展

文章出處:【微信公眾號:鋰電聯盟會長】歡迎添加關注!文章轉載請註明出處。

責任編輯:haq

打開APP閱讀更多精彩內容

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容圖片侵權或者其他問題,請聯繫本站作侵刪。 侵權投訴

相關焦點

  • 關於全固態鋰離子電池的淺析
    其關鍵主要包括製備高室溫電導率和電化學穩定性的固態電解質以及適用於全固態鋰離子電池的高能量電極材料、改善電極/固態電解質界面相容性。對於電極材料的研究主要集中在兩個方面:一是對電極材料及其界面進行改性,改善電極/電解質界面相容性;二是開發新型電極材料,從而進一步提升固態電池的電化學性能。正極材料全固態電池正極一般採用複合電極,除了電極活性物質外還包括固態電解質和導電劑,在電極中起到傳輸離子和電子的作用。
  • ...儲能|負極|固態電池|全固態電池|高禾投資研究中心|正極材料|鋰...
    其中,聚合物電解質屬於有機電解質,氧化物與硫化物屬於無機陶瓷電解質;按照正負極材料的不同,固態電池還可以分為固態鋰離子電池(沿用當前鋰離子電池材料體系,如石墨+矽碳負極、三元正極)和固態鋰金屬電池(以金屬鋰為負極)。
  • 上海矽酸鹽所在固態電池界面激活研究中取得重要進展
    存在的問題,上海矽酸鹽所李馳麟研究員帶領的團隊提出針對固態電池界面鈍化層的脆化-碎化機制,通過利用表面張力可調的近室溫液態金屬,對石榴石型固態電解質表面進行刷塗清洗改性,在電解質長時間暴露空氣和鈍化層大量累積的情況下仍然顯著提升了鋰金屬對其表界面的浸潤性。
  • ...何平、周豪慎揭示全固態電池內空間電荷層對鋰離子輸運的影響機制
    全固態鋰電池擁有高能量密度和高安全性等優勢,成為能源領域研究的熱點。但是全固態電池內正極和電解質的固/固界面還存在諸多難題,尤其是空間電荷層效應。由於難以將空間電荷層與界面處其他影響鋰離子輸運的因素分離開,所以此前關於空間電荷層對鋰離子輸運影響的研究結果存在大量的分歧。
  • 學術前沿|近期頂刊固態電池研究進展
    來源-能源谷-1.Nature Communications:全固態電池中空間電荷層對鋰離子界面傳輸的影響的原位可視化空間電荷層(SCL)通常被認為是全固態鋰離子電池(ASSLIBs)中緩慢的界面鋰離子傳輸的起源之一
  • 固態電池什麼時候可以商用_全固態電池電極材料
    另外,能量密度也不能滿足大型電池的要求。對於電極材料的研究主要集中在兩個方面:一是對電極材料及其界面進行改性,改善電極/電解質界面相容性;二是開發新型電極材料,從而進一步提升固態電池的電化學性能。   正極材料   全固態電池正極一般採用複合電極,除了電極活性物質外還包括固態電解質和導電劑,在電極中起到傳輸離子和電子的作用。
  • 全固態鋰金屬電池近期研究成果及國內電池供應商布局
    一、超薄柔性聚合物電解質助力高效全固態鋰金屬電池目前,對聚合物電解質的研究多聚焦在提高其離子電導率。離子電導率由固態電解質的離子電導對電解質厚度和面積進行標準化處理計算得到。不同固態電解質的厚度相差較大,因此,即使電導率相近,厚度的差異導致了鋰離子在固態電解質中遷移距離的不同,直接影響了全固態電池電化學性能和能量密度。
  • 白瑩教授課題組在Advanced Science報導鋰離子電池界面離子輸運...
    LiTaO3壓電包覆層調控界面離子輸運示意圖近期,我校物理與電子學院白瑩教授課題組在調控鋰離子電池界面離子輸運領域取得新進展,相關成果以「Local Electric-field-driven Fast Li
  • 固態鋰離子電池的相關知識詳解
    你了解什麼是固態鋰離子電池嗎?隨著社會的快速發展,我們的固態鋰離子電池也在快速發展,那麼你知道固態鋰離子電池的詳細資料解析嗎?接下來讓小編帶領大家來詳細地了解有關的知識。所謂「全固態鋰電池」是一種在工作溫度區間內所使用的電極和電解質材料均呈固態,不含任何液態組份的鋰電池,全稱是「全固態電解質鋰電池」。
  • 進展 | 高電壓鈷酸鋰鋰離子電池正極材料研究進展
    鈷酸鋰(LiCoO2)是最早商業化的鋰離子電池正極材料。由於其具有很高的材料密度和電極壓實密度,使用鈷酸鋰正極的鋰離子電池具有最高的體積能量密度,因此鈷酸鋰是消費電子用鋰離子電池中應用最廣泛的正極材料。隨著消費電子產品對鋰離子電池續航時間的要求不斷提高,迫切需要進一步提升電池體積能量密度。
  • 固態鋰離子電池的詳細資料解析
    隨著社會的快速發展,我們的固態鋰離子電池也在快速發展,那麼你知道固態鋰離子電池的詳細資料解析嗎?接下來讓小編帶領大家來詳細地了解有關的知識。   所謂「全固態鋰電池」是一種在工作溫度區間內所使用的電極和電解質材料均呈固態,不含任何液態組份的鋰電池,全稱是「全固態電解質鋰電池」。因此,全固態鋰電池,已經是一個字不能少、不能變的最簡稱呼。
  • 固態電池研究綜述(2020.7-2020.11)
    此外,基於上述研究進展,團隊從超分子化學和界面構效關係的角度加深硫化物固態電池的關鍵科學問題理解,並且為理性設計高能量密度固態鋰金屬電池和解決其技術瓶頸提供了建設性方案。  該修飾層所具有的特殊結構導致毛細吸收作用,促進鋰金屬與電解質的潤溼,構建出均勻穩固的界面。同時,該修飾層低的電子電導性,抑制了電子穿越界面,從而避免鋰枝晶在界面滲透或在內部形成。因此,所組裝的固態電池界面阻抗低,極限電流得到顯著提升,匹配正極後的全電池顯示出良好的循環特性。特別地,該工作還探索了極限電流的測試模式,首次提出了極限面容量的概念。
  • 新能源汽車電池展望:固態鋰離子電池、鋰硫電池、鋰空氣電池?
    1 固態鋰離子電池固態鋰離子電池從 20 世紀 50 年代就開始研究,但受當 時材料技術、製造技術限制,其電性能和安全性不能達到實用化要求。智能電子產品、電動汽車產業要求配套電池性能不斷提升,使固態鋰離子電池成為近年來研究的重點。固態鋰離子 電池安全性好、比能量高(可達400 Wh/kg 以上)、循環壽命長、 工作溫度範圍寬、電化學窗口寬(可達 5 V)。
  • 我國科學家陶瓷基鋰氟轉換固態電池研究取得進展
    與傳統鋰離子電池相比,鋰金屬電池的能量密度更高,正極材料的選擇更廣泛,既可以與傳統的含鋰聚陰離子框架和層狀氧化物材料匹配,也可以與新興的具有更高理論能量密度的無鋰氟化物材料配合。一般的鋰金屬電池以電解液為鋰離子傳輸的介質,主要成分是鋰鹽和有機溶劑,但由於液態介質副反應多和有機物的易燃性,這一類電池存在一定安全隱患。
  • 我校教師團隊在鋰離子電池研究中取得系列重要進展
    我校教師團隊在鋰離子電池研究中取得系列重要進展面向我國新能源汽車產業崛起和武漢市光電子產業集群的發展,江漢大學化學與環境工程學院光電化學材料與器件教育部重點實驗室成立了電化學儲能材料與器件團隊。經過初期的建設和發展,在鋰離子電池材料與器件研究中取得一系列重要進展。
  • 中科院高電壓鈷酸鋰鋰離子電池正極材料研究獲進展
    來源:中國科學院鈷酸鋰(LiCoO2)是最早商業化的鋰離子電池正極材料。由於其具有很高的材料密度和電極壓實密度,使用鈷酸鋰正極的鋰離子電池具有高的體積能量密度,因此鈷酸鋰是消費電子用鋰離子電池中應用廣泛的正極材料。隨著消費電子產品對鋰離子電池續航時間的要求不斷提高,迫切需要進一步提升電池體積能量密度。
  • 中科院團隊在固態電池研究領域獲進展
    記者9月25日從中國科學院金屬研究所獲悉,該所瀋陽材料科學國家研究中心先進炭材料研究部新型電化學材料與器件團隊,近期在聚環氧乙烷基高性能電解質和固態電池方向取得進展,>提高全固態聚合物鋰電池循環使用次數和穩定性,並實現在室溫和低溫下的優異電化學性能。
  • 基於硫化物電解質的鋰/硫化物全固態電池
    相較於傳統電解液的鋰離子電池,基於固態電解質的全固態鋰電池未來將具有更高的安全性和能量密度,可以預見,發展全固態鋰電池有望突破傳統液態電解質鋰離子電池的瓶頸,具有重要的現實意義。在早期研究中,由於固態電解質離子電導率較低,全固態鋰電池在與有機電解液鋰離子電池的競爭中並不具備優勢。但近年來,科研人員在固態電解質電導率方面取得了突破,尤其以LGPS為代表的一系列硫化物固態電解質的離子電導率已經達到甚至超過傳統液態電解質。
  • 全固態鋰離子電池到底是個什麼鬼?
    日前有海外媒體報導稱,寶馬正在研發一款更為先進的鋰離子電池,這款電池將用固態電解質代替現有的電解液,更輕、更安全、密度更高。據悉,新電池的量產時間或為2026年。看到這則新聞之後第一個想到的就是BMW什麼時候才能學會我朝的一貫作風啊?2026年還有9年時間呢,最差也要說(chui)是(niu)2020年量產讓我等先興奮幾分鐘吧?
  • 物理所在高電壓鈷酸鋰鋰離子電池正極材料研究取得進展
    鈷酸鋰(LiCoO2)是最早商業化的鋰離子電池正極材料。由於其具有很高的材料密度和電極壓實密度,使用鈷酸鋰正極的鋰離子電池具有最高的體積能量密度,因此鈷酸鋰是消費電子用鋰離子電池中應用最廣泛的正極材料。隨著消費電子產品對鋰離子電池續航時間的要求不斷提高,迫切需要進一步提升電池體積能量密度。