人教版四年級數學上冊第六單元-除數是兩位數的除法,是這一冊的重點內容,主要分三部分來介紹:(1)口算除法和估算除法;(2)筆算除法;(3)商的變化規律及用商的變化規律簡便計算。
一、口算除法和估算除法
1. 口算除法。課本中是以80÷20和150÷50為例。對於這兩道題,我們可以用兩種思路來口算。
(1)第一種思路:利用已知的20×4=80和50×3=150分別得出80÷20=4和150÷50=3。
(2)第二種思路:我們把80、20、150和50看成8個十、2個十、15個十和5個十。這樣,就把80÷20和150÷50變成了求8個十是2個十的幾倍,15個十是5個十的幾倍,也就可以列式為8÷2、15÷5,把除數是兩位數的口算變成了表內除法,大大簡便了計算。再想,8個十也就是80、2個十也就是20、15個十也就是150、5個十也就是50,又把8÷2和15÷5還原成了80÷20和150÷50,學生理解了算理,計算也就不容易出錯。
2.估算除法。被除數和除數都可以用四捨五入的方法變成整十的數來口算,注意結果要用約等號連接。
二、筆算除法
筆算除法是通過例1至例7共7個例題說明的,包含了除數是整十數的除法、四舍和五入試商、靈活試商、商是兩位數的除法(含個位商0的情況)。
例1的算式為92÷30,側重點是商的書寫位置,除到被除數的哪一位,就在那一位上寫商。
例2的算式為178÷30,側重點是被除數的前兩位不夠除,要看前三位。
例3的算式為84÷21和430÷62,說明四舍試商,62看成了60,因為四舍把除數變小了,所以試商容易偏大。
例4的算式為197÷28,說明五入試商,把28看成30,因為五入把除數變大,所以試商容易偏小。
例5的算式為240÷26,說明的是靈活試商。教材介紹的方法有三種:(1)用五入的方法,可以把除數26看作30試商;(2)想10個26是260,比240多20,可以商9;(3)26可以看作25來試商。
例6的算式為612÷18,說明商是兩位數的除法。因為被除數的前兩位夠除,所以商是兩位數,重點是要弄清每一位商的書寫位置,除到被除數的哪一位,就在那一位上寫商。
例7的算式為940÷31,說明的也是商為兩位數的除法,但與例6不同的是,側重點是餘數不夠除時,個位要商0。
例1至例7學完,總結出除數是兩位數的除法的計算方法:
(1)從被除數的高位除起,先用除數試除被除數的前兩位數,如果它比除數小,再試除前三位數。
(2)除到被除數的哪一位,就在那一位上面寫商。
(3)求出每一位商,餘下的數必須比除數小。
三、商的變化規律及用商的變化規律簡便計算
商的變化規律及用商的變化規律簡便計算是在例8至例10中說明的。
例8利用三組算式說明了商的變化規律:
(1)除數不變,被除數乘或除以幾(0除外),商也乘或除以幾。
(2)被除數不變,除數乘或除以幾(0除外),商反而除以或乘幾。
(3)被除數和除數都乘或除以幾(0除外),商不變。
例9中,第1個小題說明了利用商不變的規律,豎式除法可以簡便計算,當被除數和除數末尾都有一個0時,可以同時划去這個0,相當於同時除以10,除數和被除數都變小了,從而使計算簡便。第2個小題的算式為120÷15,說明了當除數個位為5時,除數和被除數可以同時乘一個雙數,把除數變成整十的數進行簡便計算。
例10的算式為840÷50,這是一個有餘數的除法,說明的是當利用商不變的規律進行豎式除法簡便計算時,當有餘數時,算完後要還原餘數。除數和被除數都劃掉了一個0,相當於都除以了10,實際計算的是84÷5,餘數為4,不是原來算式的餘數,所以4應該乘10,得到的40才是原題的餘數。