德孚2019中文視頻摘要大賽已經進入第二輪大眾投票階段,我們將在這周內對候選視頻做一一介紹,請大家踴躍為您喜歡的摘要視頻投出一票。
今天我們為大家介紹的第三篇論文是負載乳鐵蛋白的HupA納米乳劑經鼻內靶向藥物運送的優化設計,這論文發表於國際納米醫學期刊,內容摘要如下:
Background: Huperzine A (HupA) is a selective acetylcholinesterase inhibitor used to treat Alzheimer’s disease. The existing dosage of HupA lacks brain selectivity and can cause serious side effects in the gastrointestinal and peripheral cholinergic systems.
Purpose: The aim of this study was to develop and characterize a HupA nanoemulsion (NE) and a targeted HupA-NE modified with lactoferrin (Lf) for intranasal administration.
Methods: The NE was formulated using pseudo-ternary phase diagrams and optimized with response surface methodology. Particle size distribution and zeta potential were evaluated, and transmission electron microscopy was performed. We investigated the transport mechanisms of HupA-NEs into hCMEC/D3 cells, an in vitro model of the blood-brain barrier. HupA-NE, Lf-HupA-NE, and HupA solution were intranasally administered to rats to investigate the brain-targeting effects of these formulations. A drug targeting index (DTI) was calculated to determine brain-targeting efficiency.
Results: Optimized HupA-NE had a particle size of 15.24±0.67 nm, polydispersity index (PDI) of 0.128±0.025, and zeta potential of −4.48±0.97 mV. The composition of the optimized HupA-NE was 3.00% isopropyl myristate (IPM), 3.81% Capryol 90, and 40% Cremophor EL + Labrasol. NEs, particularly Lf-HupA-NE, were taken up into hCMEC/D3 cells to a greater extent than pure drug alone. Western blot analysis showed that hCMEC/D3 cells contained P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance associated protein 1 (MRP1) transporters. The likely mechanisms resulting in higher NE transport to the brain were uptake by specific transporters and transcytosis. In vivo, intranasal Lf-HupA-NE significantly enhanced drug delivery to the brain compared to HupA-NE, which was confirmed by differences in pharmacokinetic parameters. The DTI of Lf-HupA-NE (3.2±0.75) demonstrated brain targeting, and the area under the curve for Lf-HupA-NE was significantly higher than that for HupA-NE.
Conclusion: Lf-HupA-NE is a promising nasal drug delivery carrier for facilitating delivery of HupA to the central nervous system.
Keywords: nanoemulsion, lactoferrin, brain targeting, intranasal delivery
「中文摘要視頻大獎(2019)」投票現在正式開始。誠懇邀請您在 2020 年 3 月 27 號前關注德孚的小程序,並投票選出您喜歡的中文摘要視頻!
得票最多的視頻,將會成為本屆中文摘要視頻大獎的得主。
非常感謝您能百忙中,抽出時間來投票支持您喜歡的中文摘要視頻!