金屬材料的物理性能

2021-01-15 維修共工

1.金屬材料的物理性能

(1)密度

物質單位體積所具有的質量稱為密度,用符號表示。利用密度的概念可以幫助我們解決一系列實際問題,如計算毛坯的重量、鑑別金屬材料等。常用金屬材料的密度如下:鋼為7.8 克/立方釐米,灰鑄鐵為7.2 克/立方釐米,銅為8.9 克/立方釐米,鋁為2.7 克/立方釐米。

(2)導電性

金屬傳導電流的能力稱為導電性。各種金屬的導電性不同,銀的導電性最好,其次是金、銅和鋁。

(3)導熱性

金屬傳導熱量的能力稱為導熱性。一般說導電性好的材料,其導熱性也好。若某些零件在使用中需要大量吸熱或散熱時,則要用導熱性能好的材料。如汽車水箱散熱器、燃氣熱水器管常用導熱性好的銅和鋁合金製造,以提高導熱效果。

(4)熱膨脹性

金屬升高溫度時體積發生脹大的現象稱為金屬的熱膨脹。例如,被焊的工件由於受熱不均勻而產生不均勻的熱膨脹,就會導致焊件的變形和焊接應力。衡量熱膨脹性的指標稱為熱膨脹係數。

2.金屬材料的力學性能

金屬材料承受外部負荷時,從開始受力直至材料破壞的全部過程中所呈現的力學特徵,稱為力學性能。它是衡量金屬材料使用性能的重要指標。力學性能主要包括強度、塑性、硬度和韌度等。

(1)強度

金屬材料的強度性能表示金屬材料對變形和斷裂的抗力,它用單位截面上所受的力(稱為應力)來表示。常用的強度指標有屈服強度、抗拉強度等。

屈服強度:鋼材在拉伸過程中,當拉應力達到某數值而不再增加時, 其變形卻繼續增加,這個拉應力值稱為屈服強度,以Rel表示。Rel值越高,材料的強度越高。

杭拉強度:金屬材料在破壞前所承受的最大拉應力,以Rm表示。Rm值越大,金屬材料抵抗斷裂的能力越大,強度越高。

(2)塑性

塑性是指金屬材料在外力作用下產生塑性變形的能力。表示金屬材料塑性性能的指標有伸長率、斷面收縮率及冷彎角等。

(3)衝擊韌度

衝擊韌度是衡量金屬材料抵抗動載荷或衝擊力的能力。衝擊試驗可以測定材料在突加載荷時對缺口的敏感性。

(4)硬度硬度是金屬材料抵抗外物壓人產生表面變形的能力。常用的硬度有布氏硬度HBW、洛氏硬度HRC( HRA、HRB)和維氏硬度HV三種。

相關焦點

  • 鋼結構網架金屬材料的物理性能
    鋼結構網架金屬材料的物理性能主要體現在它的力學性能。 任何機械零部件在加工和使用的過程中都會承受外力(即載荷)的作用。材料在載荷作用下所表現出的特性稱為材料的力學性能,包括強度、塑性、硬度、衝擊韌性、疲勞強度等性能。
  • 金屬材料的物理、化學和力學性能有哪些
    金屬材料的性能很多,不同的使用要求和使用環境,應具有相應的性能要求。具體來說主要有:物理化學性能金屬材料的物理、化學性能主要是指材料的密度、熔點、導熱性、導電性、熱膨脹性、導磁性、耐腐蝕性等。常用金屬材料的物理性能見圖1。
  • 金屬的物理性能和化學性能
    二、物理性能金屬村料在各種物理條件作用下所表現出的性能稱為物理性能。它包括密度、熔點、導熱性、導電性、熱彭張性和磁性等。1.密度物質單位體積的質量稱為該物質的密度,用符號???表示。密度是金屬材料的一一個重要物理性能,不同材料的密度不同。
  • 金屬所材料熱物理性能測試研究五十年
    ,基本與歐美處於同步發展水平,以中科院瀋陽金屬研究所何冠虎和周熙寧老師為代表的老一輩學者則是我國熱物理性能測試領域的開拓者。這裡轉載兩位前輩所撰寫的文章,一方面是為了部分展示我國熱物理性能測試技術的發展歷史,另一方面是表達對前輩老師們的崇高敬意。原文作者:何冠虎 周熙寧(中國科學院瀋陽金屬研究所)準確的熱物理性能數據是材料製備、熱過程控制、熱結構設計計算的基礎。金屬所建所之初,在開展金屬物理基礎研究的同時,十分重視物理性能測試方法和測試裝備的研究工作。
  • 金屬材料性能的計算機模擬
    JMatPro 是一套功能強大的金屬材料性能模擬軟體。被廣泛用於航空航天、船舶製造、機械製造等行業中。JMatPro可用來計算多種金屬材料的性能,其中目前可計算的材料類型包括鎳基合金、鋁合金、鎂合金、鈦合金、鋼鐵(不鏽鋼、高強低合金鋼、鑄鐵) 、鋯合金、焊料合金等。
  • 關於金屬材料的機械性能的基礎知識
    金屬材料的性能一般分為工藝性能和使用性能兩類。所謂工藝性能是指機械零件在加工製造過程中金屬材料在所定的冷、熱加工條件下表現出來的性能金屬材料工藝性能的好壞,決定了它在製造過程中加工成形的適應能力。由於加工條件不同,要求的工藝性能也就不同,如鑄造性能、可焊性、可鍛性、熱處理性能、切削加工性等。所謂使用性能是指機械零件在使用條件下,金屬材料表現出來的性能,它包括機械性能、物理性能、化學性能等。金屬材料使用性能的好壞,決定了它的使用範圍與使用壽命。在機械製造業中,一般機械零件都是在常溫、常壓和非強烈腐蝕性介質中使用的,且在使用過程中各機械零件都將承受不同載荷的作用。
  • 工程材料性能的簡介
    工程材料的性能包括工藝性能和使用性能。工藝性能是指金屬材料使用某種工藝方法進行加工的難易程度。使用性能是指金屬材料在正常工作條件下所表現出來的力學性能、物理性能、化學性能。材料的力學性能材料的力學性能,指的是材料在外力作用下表現出來的性能。
  • 金屬材料工藝性能名詞簡介
    1:可鑄性(castability):是指可用於獲得合格鑄件的金屬材料的性能。可鑄性主要包括流動性,收縮和偏析。流動性是指液態金屬填充模具的能力。收縮率是指鑄件凝固時的體積收縮率。偏析是指金屬的內部化學組成和結構的不均勻性,這是由於在金屬的冷卻和固化過程中結晶順序的不同而引起的。 。2:可鍛性:是指金屬材料的性能,可以在衝壓過程中改變形狀而不會破裂。
  • 由狄拉克物理、金屬磁、二維性、化學穩定性集於一身的奇異材料!
    凝聚態物理和材料科學領域是緊密聯繫在一起的,因為新物理經常在具有特殊原子排列的材料中被發現。晶體在空間中有重複的原子單元,可以有特殊的圖案,從而產生奇異的物理特性。特別令人興奮的是擁有多種奇異特性的材料,因為它們讓科學家有機會研究這些特性是如何相互作用和影響的。而這些組合可能會產生意想不到的現象,並推動多年的基礎和技術研究。
  • 由狄拉克物理、金屬磁、二維性、化學穩定性集於一身的奇異材料
    凝聚態物理和材料科學領域是緊密聯繫在一起的,因為新物理經常在具有特殊原子排列的材料中被發現。晶體在空間中有重複的原子單元,可以有特殊的圖案,從而產生奇異的物理特性。特別令人興奮的是擁有多種奇異特性的材料,因為它們讓科學家有機會研究這些特性是如何相互作用和影響的。而這些組合可能會產生意想不到的現象,並推動多年的基礎和技術研究。
  • 常見化學元素對金屬材料性能的影響
    常見化學元素C、S、P、Mn、Si、W、Cr、V、Mo、Ti、Ni、B、Al、Cu對金屬材料性能的影響1對鋼材性能的影響(1)C碳含量越高,鋼的硬度越高,耐磨性越好,但塑性及韌性越差。含錳量很高的高合金鋼(高錳鋼)具有良好的抗磨性及其他物理性能。(5)Si矽含量增加可使鋼的硬度增加,但塑性及韌性下降。電工用鋼中含一定量的矽能改善軟磁性能。(6)W鎢可提高鋼的紅硬性和熱強性,並可提高鋼的耐磨性。
  • 金屬材料知識大全
    其中有通過快速冷凝工藝獲得的非晶態金屬材料,以及準晶、微晶、納米晶金屬材料等;還有隱身、抗氫、超導、形狀記憶、耐磨、減振阻尼等特殊功能合金以及金屬基複合材料等。3.性能  一般分為工藝性能和使用性能兩類。所謂工藝性能是指機械零件在加工製造過程中,金屬材料在所定的冷、熱加工條件下表現出來的性能。
  • 金屬鋁粒徑對MgO-C磚的物理性能和組織的影響
    摘要:通過改變MgO-C磚中所添加的金屬鋁粒徑,並根據此時鋁的分布狀態,對磚組織進行了評價,研究了與物理性能的關係。金屬鋁的粒徑越小,乾燥後及燒成後的鋁成分向結構中的分散性就越高。這些分散性的不同可以用分析EDS圖像獲得的分形尺寸表示,鋁的分散性高,磚結構均勻,性能提高,波動也降低。
  • 「2019自然學術會議—金屬-有機框架材料的物理性質」南開舉行
    南開新聞網訊(記者 馬超 通訊員 王菲 攝影 吳軍輝)11月19日,「2019自然學術會議—金屬-有機框架材料的物理性質」開幕式在南開大學津南校區西樓報告廳舉行。副校長王磊,大會組委會主席、材料科學與工程學院負責人,Nature出版集團代表、《通訊化學》主編維多利亞·理察博士出席開幕式並致辭。
  • 工業設計中的金屬材料
    眾所眾知,金屬材料多是指工業應用中的純金屬、各種合金及金屬材料金屬間化合物。具有優異的工藝性能和使用性能,能夠按照設計師的設計構思實現產品的多種功能與造型,廣泛應用於工業設計中,成為現代工業的支柱材料。今天將大家走進「金屬」的世界,感受不一樣的「金屬」!
  • 金屬材料的冷作硬化
    金屬經塑性變形後,其機械性能、物理性能和化學性能都要發生變化,而機械性能 的變化是最值得注意的。機械性能的變化表現在:隨著變形程度的增加,金屬的強度和硬度逐漸升高,而塑 性和韌性則逐漸降低。這種現象稱為加工硬化或冷作硬化。
  • 研究人員開發出超高性能金屬氧化物材料
    等離子體材料廣泛應用於顯微鏡、傳感、光學計算和光伏等領域。最常見的等離子體材料是金和銀。其他一些材料也表現出類似金屬的光學特性,只是在有限的波長範圍內表現不佳。近年來,人們在尋找除貴金屬以外的高性能等離子體材料方面做了很多努力。
  • 驚聞金屬材料疲勞試驗新成果,提高抗疲勞性能新思路
    金屬材料的疲勞試驗關係到工程部件和設施的長期安全性問題,所以一直是其力學性能檢測的重要組成部分。通過對金屬材料檢測的研究表明,如果對金屬材料進行強烈塑形變形(SPD),產生超細晶粒(UFG)和納米晶粒(NG)等微觀結構,可以實現材料疲勞強度的提高。
  • 3D列印材料分類及性能要求
    一、 3D列印材料分類1. 按材料的物理狀態分類:可以分為液體材料、薄片材料、粉末材料、絲狀材料等。2.
  • 液態金屬:金屬材料中的新貴,具有重大產業化前景
    液體金屬合金材料擁有獨特的非結晶分子結構,之所以叫液態金屬,是因為其有著較低的熔點,而除此之外,它最大的優勢還在於熔融後的塑形能力。由於其凝固過程的物理特性與普通金屬完全不同,使它的鑄造過程更加類似於塑料而非金屬,可以更方便地打造為各種形態的產品。