考研數學複習:考研數學複習先了解考察特點,命題趨勢,再對症下藥的複習,這樣才能提升效率。本文為廣大考生整理2018考研數學重難點:極限考點精講,更多考研數學怎麼複習、考研數學題型、考研數學大綱、考數學試題等備考資料,歡迎訪問北京研究生招生信息網。
極限是每年必考的一個知識點,所佔分值並不少。關於極限你掌握了多少?下面從考察方式、出題角度、解題思路等方面給大家進行全面的解析,幫助大家掌握極限的知識!
極限是每年必考的一個知識點,把直接考極限以及由其他問題轉化最後是極限問題,這部分分值至少在20分以上,所以是我們考生複習必須要重視的一個知識點。比如2016年,數三填空題(9)(10),第一個解答題(15)就是直接考察極限的計算。還有解答第(19)題,由級數和值計算轉化極限問題。
如果這部分掌握了複習的要點,還是很容易得分。下面就如何對這部分複習給大家作個全面總結。
一、考察方式
1、直接考察函數極限
2、由其他問題轉化為極限問題,然後求解極限問題
常見轉化的有:
(1)無窮小的比較問題
(2)函數一點連續問題
(3)間斷點問題
(4)一點導數存在性問題
(5)廣義積分問題
(6)級數斂散問題
這部分的處理我們考試必須要明白他們轉化極限問題的形式是什麼,然後就按照極限問題處理就行了。
二、極限對應出題角度
通常的角度有4種
1、直接考察計算
2、已知極限確定參數
3、已知極限求極限問題
4、極限存在性證明(證明涉及數列極限較多)
三、每種角度的處理方法
1、極限的計算,在處理極限計算時,按照三個步驟去做:
(1)判斷類型,直接把極限變量的趨近值帶入到極限函數裡面算值判斷;
(2)化簡極限函數,等價無窮小替換(要求無窮小部分必須是整個極限函數的一個因式)、可以先求極限函數中的極限不為零的因式極限(要求是整個極限函數的一個因式的極限不為零)、極限函數中有分項的極限存在則分項求極限;
(3)化簡之後沒有結果那麼我們就要出來極限函數。
其中第三點是我們計算極限的重心,這部分我們要結合函數類型去總結出處理方式,比如是用通分、換元、同提、有理化、洛必達等處理還是用其他什麼處理。用什麼方式的主要是有極限函數中有什麼類型的函數來決定的,如遇到帶有根號首先想到能不能等價無窮小替換、然後就是有理化、換元、同提、洛必達等。其他也是類似如有三角函數從什麼角度去處理、有冪指函數的怎麼處理、遇到指數函數的怎麼處理,遇到變限積分的怎麼處理等。
2、已知極限確定參數問題的處理,利用極限四則運算列出關於參數的方程。需要對極限函數處理變形時,其他變形方式都一樣,但是在用洛必達法則的時候要多注意。洛必達法則時要先對求導之後的極限函數討論參數對極限的影響,這樣得出參數的範圍或者方程。如果有部分參數可以先確定,那可以把這部分參數先回帶到極限函數中,再去確定其他參數。
3、已知極限求極限。處理方式一般有以下幾個:
(1)通過未知極限函數去湊已知極限的極限函數形式,然後用極限的四則運算求出極限;
(2)通過已知極限的極限函數去湊未知極限函數形式,然後有極限的四則運算算極限;
(3)通過函數極限與無窮小關係,從已知極限中解出未知的函數部分,然後把表達式帶入到未知的極限函數中,求出極限。
4、極限存在性證明,這類題通常是以證明數列極限存在性為主。數列極限存在性的證明主要用的方法就是夾逼準則、單調有界準則、數列定義。這裡的難點就是判斷用什麼方式處理,所以考生平時要積累什麼問題選擇什麼方式處理。這個可以從題目給出的數列形式和條件給的角度上面去判斷,比如給出數列遞推關係時,往往先考慮單調有界準則、再考慮數列定義,最後考慮夾逼準則。
關注北京中公考研微信號bjzgky365,了解2018考研動態
免責聲明:本站所提供試題均來源於網友提供或網絡搜集,由本站編輯整理,僅供個人研究、交流學習使用,不涉及商業盈利目的。如涉及版權問題,請聯繫本站管理員予以更改或刪除。