SPSS|簡單線性回歸(一)

2021-02-20 學術拓荒者

本研究Durbin-Watson檢驗值為1.957。一般來說,Durbin-Watson檢驗值分布在0-4之間,越接近2,觀測值相互獨立的可能性越大。即,本研究中簡單線性回歸的觀測值具有相互獨立性,滿足假設4。

但不得不說,Durbin-Watson檢驗不是萬能的。它僅適用於對鄰近觀測值相關性的檢驗(1st-order autocorrelation)。舉例來說,我們一般按照調查順序錄入數據,將第一位受試者錄入到第一行,再將第二位受試者錄入到第二行。在這種情況下,Durbin-Watson檢驗可以檢測出第一位受試者和第二位受試者之間的相關性。

但是如果我們亂序錄入數據,將第一位受試者和可能與他存在自相關的第二位受試者離得很遠,Durbin-Watson檢驗的結果就不準確了。因此,我們需要慎重對待Durbin-Watson檢驗的結果。

其實,觀測值是否相互獨立與研究設計有關。如果研究者確信觀測值不會相互影響,我們甚至可以不進行Durbin-Watson檢驗,直接認定研究滿足假設4。

假設5:不存在顯著的異常值

在簡單線性回歸中,異常值是指觀測值與預測值相差較大的數據。這些數據不僅影響回歸統計,還對殘差的變異度和預測值的準確性有負面作用,並阻礙模型的最佳擬合。因此,我們必須充分重視回歸的異常值。從看電視時間(time_tv)和膽固醇濃度(cholesterol)的散點圖可以看出,本研究存在潛在異常值,如下圖標記點:

相關焦點

  • spss 方法 線性回歸專題及常見問題 - CSDN
    本文收集整理關於spss多元線性回歸結果解讀的相關議題,使用內容導航快速到達。內容導航:Q1:請高手幫忙分析下SPSS的多元線性回歸結果吧~急啊~~~你的回歸方法是直接進入法擬合優度R方等於0.678,表示自變量可以解釋因變量的67.8%變化,說明擬合優度還可以。
  • spss多元線性回歸專題及常見問題 - CSDN
    本文收集整理關於spss多元線性回歸結果解讀的相關議題,使用內容導航快速到達。內容導航:Q1:請高手幫忙分析下SPSS的多元線性回歸結果吧~急啊~~~你的回歸方法是直接進入法擬合優度R方等於0.678,表示自變量可以解釋因變量的67.8%變化,說明擬合優度還可以。
  • 多元線性回歸預測spss - CSDN
    回歸一直是個很重要的主題。因為在數據分析的領域裡邊,模型重要的也是主要的作用包括兩個方面,一是發現,一是預測。而很多時候我們就要通過回歸來進行預測。關於回歸的知識點也許不一定比參數檢驗,非參數檢驗多,但是複雜度卻絕對在其上。回歸主要包括線性回歸,非線性回歸以及分類回歸。本文主要討論多元線性回歸(包括一般多元回歸,含有虛擬變量的多元回歸,以及一點廣義差分的知識)。
  • SPSS統計分析案例:一元線性回歸
    微信號後臺有非常之多的關於回歸分析的留言,作為最常見的統計分析方法,在工作生活中的應用需求量巨大,這兩天已經為大家選好了案例數據,先從一元線性回歸分析開始。一元線性回歸,顧名思義,僅有一個自變量的回歸模型,研究的是一個因素對結果的影響,可以用於預測,也經常被稱之為簡單線性回歸分析。
  • 簡單線性回歸(一)
    回歸分析(regression analysis )是研究一個變量如何隨另一些變量變化的方法。例如,學習成績會受努力的時間,方法,個人的智慧,教育資源等因素影響;疾病的發生與生活環境,方式,遺傳因素,自身體質等影響。常見的回歸分析有 線性回歸、非線性回歸、多重線性回歸、Logistic回歸等等。
  • SPSS-線性相關與多重線性回歸
    對服從正態分布的定量資料,我們探討線性相關,對計數和等級資料,我們探討秩相關,今天的內容,便是定量資料的相關與回歸。1 簡單線性相關與回歸:例:探討身高與前臂長的相關性① 繪製散點圖(直觀的反應兩者關係):② 求相關係數(兩變量相關關係的方向及密切程度):
  • SPSS操作:簡單線性回歸(史上最詳盡的手把手教程)
    假設6:等方差性假設7:回歸殘差近似正態分布那麼,進行簡單線性回歸分析時,如何考慮和處理這7項假設呢?在簡單線性回歸中,異常值是指觀測值與預測值相差較大的數據。這些數據不僅影響回歸統計,還對殘差的變異度和預測值的準確性有負面作用,並阻礙模型的最佳擬合。因此,我們必須充分重視回歸的異常值。
  • SPSS:簡單線性回歸分析(圖文案例)
    線性回歸是用直線回歸方程表示兩個數量變量間依存關係的統計分析方法。如果某一個變量隨著另一個變量的變化而變化,並且它們的變化在直角坐標系中呈直線趨勢,就可以用一個直線方程來定量地描述它們之間的數量依存關係。線性回歸分析中兩個變量的地位不同,其中因變量(y)是依賴自變量(x)而變化。
  • spss 非線性回歸 - CSDN
    我們在做問卷分析時,由於因變量多為連續的線性變量,多半會採用線性回歸分析來研究變量之間的關係。此時,一般資料或者人口學變量中,就會含有很多分組或分類的變量,比如性別,學歷等等。 如果因變量在這些人口學變量上存在顯著的差異,那麼做回歸分析時候,就需要將這些存在顯著差異的人口學變量作為控制變量納入線性回歸分析。
  • 簡單線性回歸模型
    2 基礎回顧回歸的概念來源於實際問題,那麼現在我們所說的線性回歸分析問題具體指的是什麼呢?3 求解線性回歸模型函數3.1 極大似然法最小二乘法和極大似然法都可以用來求解線性回歸模型,我們在往期文章中討論過最小二乘法,這裡對似然法進行簡單介紹。
  • SPSS分析技術:線性回歸分析
    線性回歸分析中,如果僅有一個自變量,可以建立一元線性模型。如果存在多個自變量,則需要建立多元線性回歸模型。線性回歸的過程就是把各個自變量和因變量的個案值帶入到回歸方程式當中,通過逐步迭代與擬合,最終找出回歸方程式中的各個係數,構造出一個能夠儘可能體現自變量與因變量關係的函數式。在一元線性回歸中,回歸方程的確立就是逐步確定唯一自變量的係數和常數,並使方程能夠符合絕大多數個案的取值特點。
  • 線性回歸:簡單線性回歸詳解
    【導讀】本文是一篇專門介紹線性回歸的技術文章,討論了機器學習中線性回歸的技術細節。線性回歸核心思想是獲得最能夠擬合數據的直線。
  • 簡單線性回歸(二)
    線性回歸相關知識:簡單線性回歸(一)線性回歸步驟線性回歸需滿足的條件①因變量Y與自變量X呈線性關係②每個個體觀察值之間互相獨立③在一定範圍內,任意給定X值,其對應的隨機變量Y均服從正態分布④在一定範圍內,不同X值所對應的隨機變量Y的方差相等某研究者測量了16名成年男子的體重(Kg)和臀圍(cm)數據,欲探求成年男子的體重與臀圍是否可以建立線性回歸模型。
  • 多元線性回歸spss結果分析_spss多元線性回歸分析結果分析 - CSDN
    通過查閱北京統計局出示的有關數據以及閱讀相關文獻,搜集北京市近15年的統計資料,基於SPSS多元線性回歸中的逐步回歸分析法,建立回歸模型。
  • SPSS多元線性回歸案例:回歸分析方法實戰
    1.線性回歸(Linear Regression)線性回歸通常是人們在學習預測模型時首選的技術之一。在這種技術中,因變量是連續的,自變量可以是連續的也可以是離散的,回歸線的性質是線性的。線性回歸使用最佳的擬合直線(也就是回歸線)在因變量(Y)和一個或多個自變量(X)之間建立一種關係。
  • 簡單線性回歸分析
    上一節我們對67例居民身高和體重的相關性分析發現,居民的體重與身高變化密切相關,即隨著身高的增加,體重逐漸上升。我們還是採用之前的數據,介紹SPSS進行線性回歸分析的具體步驟。為0.995,調整R2為0.995,進行線性回歸過程中R2的值在0-1之間,R2越大,表明納入方程的自變量對因變量的解釋程度越高,建立的數學模型也就越魯棒(Robust)。
  • spss協方差分析
    基本原理是將線性回歸與方差分析結合起來,調整各組平均數和 F 檢驗的實驗誤差項,檢驗兩個或多個調整平均數有無顯著差異,以便控制在實驗中影響實驗效應(因變量)而無法人為控制的協變量(與因變量有密切回歸關係的變量)在方差分析中的影響。好吧,聽不懂。簡單舉個例子來說:有一項研究,想知道男生和女生在跑步後的心率是否有差異。
  • spss線性回歸自變量因變量專題及常見問題 - CSDN
    轉載自公眾號:青年智囊SPSS多元線性回歸在回歸分析中,如果有兩個或兩個以上的自變量,就稱為多元回歸。事實上,一種現象常常是與多個因素相聯繫的,由多個自變量的最優組合共同來預測或估計因變量,比只用一個自變量進行預測或估計更有效,更符合實際,因此多元線性回歸被廣泛運用。今天大家一起來學習吧!
  • spss多元線性回歸模型專題及常見問題 - CSDN
    多元線性回歸,主要是研究一個因變量與多個自變量之間的相關關係,跟一元回歸原理差不多,區別在於影響因素(自變量)更多些而已,例如:一元線性回歸方程 為:    毫無疑問,多元線性回歸方程應該為:那麼,多元線性回歸方程矩陣形式為:
  • 7種執行簡單的線性回歸的分析與討論!
    由於scikit-learn是一種免費的機器學習庫,它具有回歸、分類、聚類、模型選擇和降維等功能,所以常用的方法是從該庫調用線性模型類並擬合數據。雖然這可以為應用機器學習的其他流水線特性(例如數據規範化,模型係數正則化,將線性模型提供給另一個下遊模型)提供額外的優勢,但這通常不是確定回歸係數(和一些基本的相關統計)最快或最乾淨、簡單的方法。