光波,通常是指電磁波譜中的可見光。可見光通常是指頻率範圍在3.9×10~7.5×10Hz之間的電磁波,其真空中的波長約為400~760nm。光在真空中的傳播速度為c=3×10m/s,是自然界中物質運動的最快速度。光波是橫波,其中電場強度E和磁感應強度B(或磁場強度H)彼此相互垂直,並且都與傳播方向垂直。
基本概念
光波,通常是指電磁波譜中的可見光。可見光通常是指頻率範圍在3.9×10~7.5×10Hz之間的電磁波,其真空中的波長約為400~760nm。光在真空中的傳播速度為c=3×10m/s,是自然界中物質運動的最快速度。光波是橫波,其中電場強度E和磁感應強度B(或磁場強度H)彼此相互垂直,並且都與傳播方向垂直。
光波具有波粒二象性(是指某物質同時具備波的特質及粒子的特質):也就是說從微觀來看,由光子組成,具有粒子性;從宏觀來看又表現出波動性。根據磁場場論(或者電動力學),光子是電磁場化之後的直接結果。光的粒子性揭示了電磁場作為一種物質,是與分子、原子等實物粒子一樣,有其內在的基本結構(組成粒子)的。而在經典的電動力學理論中,是沒有「光子」這個概念的。
光波作為一種特定頻段是電磁波,其顏色與頻率有關。可見光中紫光頻率最大,波長最短。紅光則剛好相反。
紅外線、紫外線、X射線等都屬於不可見光。
紅外線頻率比紅光低,波長更長。
紫外線、X射線等頻率比紫光高,波長更短。
測量工具
對於光的測量可以用到很多測量工具,比如:光元器件分析儀、偏振分析儀、偏振控制器、大功率光衰減器、光譜分析儀、數字通信分析儀、脈衝碼型發生器、並行比特誤碼率測試儀、光接收機強化測試器。
光的傳播形態分類
根據傳播方向上有無電場分量或磁場分量,可分為如下三類,任何光都可以這三種波的合成形式表示出來。
TEM波:在傳播方向上沒有電場和磁場分量,稱為橫電磁波。
TE波:在傳播方向上有磁場分量但無電場分量,稱為橫電波。
TM波:在傳播方向上有電場分量而無磁場分量,稱為橫磁波。
波動方程的簡諧波形式的特解依據其振幅隨空間位置的變化分為平面波、球面波和柱面波。
光學史
數論派認為光是組成世間萬物的五微塵(tanmatra,即「五唯」——香、味、色、觸、聲)之一。這五種元素的粒子性並沒有被特別說明,並且似乎是被作為連續狀態來理解的。
在公元前5世紀,恩培多克勒(Empedocles)提出假設,認為萬物由火、空氣、土、水四種元素構成。他相信人類的眼睛是阿佛洛狄忒(Aphrodite)以這四種元素所造,並且阿佛洛狄忒在人眼中燃炎,從而照亮外物形成視覺。但如果真是這樣,那無論晝夜人都該有同等視力。對於這個問題,恩培多克勒假想了一種太陽光線和視線互感的機制來加以解釋。另一種觀點來自勝論派,他們提出了一種原子理論,認為物理世界是由非原子的以太、時間和空間所構成。最基本的原子分別是土(prthivı),水(pani),火(agni)和空氣(vayu),這裡的意思和通常意義上的這幾種物質並不等價。這些原子結合形成雙原子分子,然後進一步結合以形成更大的分子。這些實物原子被視作是運動的,這種運動似乎還被理解為非瞬時性的。他們認為光線是高速的火(tejas)原子流。當火原子以不同速度運動、以不同形式組合時,光粒子可以展現不同的特徵。在公元前一世紀左右的《毗溼奴往世書》(Vishnu Purana)裡,陽光被稱為「太陽的七輝線」。
光被認為是和能量等同的原子整體,類似於現代光子概念,但是他們把所有物質都一概視作由這些光能粒子所構成。
希臘和泛希臘時期的理論
在公元前300年左右,歐幾裡得在著作《光學》(Optica)中寫到了他對光性質的研究。歐幾裡得設想光線筆直傳播,並用數學方法研究並闡述了反射定律。他質疑視覺產生於眼睛內發光的觀點,因為它不能解釋為什麼在夜晚眨一下眼睛後還能立刻看到星星,除非眼睛發出的光以極速傳播。
物理學理論
勒內·笛卡兒(1596~1650)認為光是發光物的一種機械屬性,這不同於海什木(Ibn al-Haytham)和威特羅(Witelo)的「形態」說,也不同於羅吉爾·培根,格羅斯泰斯特(Grosseteste)和克卜勒的「種類」說。他在1637年發表的光折射理論中,類比聲波的傳播行為,錯誤地得出了光速和傳播介質密度成正比的結論。雖然笛卡爾在相對速度上判斷錯誤,但他正確地假設了光的波狀性質,還成功地用不同介質下光速的差異解釋了折射現象。雖然笛卡爾並不是第一個嘗試用機械分析解釋光的人,但他明確堅持光僅是發光體和傳播介質的機械波性質,而因此使他的理論被視作現代物理光學的起點。
光微粒說
法國數學家皮埃爾·伽桑狄(Pierre Gassendi)提出了他的光粒子假設,他的這一假設在他死後發表,並且在艾薩克·牛頓早年引起了他的興趣。牛頓本人傾向於笛卡爾的實空理論(plenum)。他在他1675年的《解釋光屬性的假說》(An Hypothesis explaining the Properties of Light)中提到,光是由光源向四面八方發射的微粒組成。牛頓反對光波動說的一個理由是,波會繞開障礙物,而光卻是直線傳播的。但對于格裡馬爾迪(Francesco Grimaldi)觀察到的衍射現象,牛頓甚至也稍作妥協,解釋為光粒子移動於以太所產生的局部波造成。
牛頓的理論和光的反射現象相吻合,但對於折射現象,牛頓錯誤地認為是因為進入高密度介質時所受引力更大使光加速而成的。牛頓在1704年發表了他集大成的《光學》一作。牛頓本人的權威使光的粒子理論在18世紀甚囂塵上。但皮埃爾-西蒙·拉普拉斯(Laplace)反駁說,人的密度既然這麼大,那光幾乎不可能逃脫人的引力了。用現在的說法,人將成為一個黑洞。
光波動說
在1660年代,羅伯特·胡克發表了他的光波動說。克裡斯蒂安·惠更斯在1678年得出了他自己的波動學說,並在1690年發表在他的《光的專著》(Treatise on light)裡。他認為光線在一個名為發光以太(Luminiferous ether)的介質中以波的形式四射,並且由于波並不受引力影響,他假設光會在進入高密度介質時減速。光波動說預言了1800年託馬斯·楊發現的幹涉現象以及光的偏振性。楊用衍射實驗展現了光的波動性特徵,還提出顏色是由光波波長不同所致,用眼睛的三色受體解釋了色覺原理。
萊昂哈德·歐拉也是光波動說的支持者之一,他在《光和色彩的新理論》(Nova theoria lucis et colorum)中闡述了他的這一觀點,他認為波理論更容易解釋衍射現象。
之後,奧古斯丁·菲涅耳也獨立完成了他的波動理論的建立,並於1817年上遞給法國科學院。西莫恩·泊松完善了菲涅耳的數學證明,給了光粒子說致命一擊。在1821年,菲涅耳使用數學方法使光的偏振在波動理論上得到了唯一解釋。
但波動理論的弱點在於,波,類似於聲波,傳播需要介質。雖然曾有過發光以太的假想,但這也因為19世紀邁克耳遜—莫雷實驗陷入了強烈的質疑。
牛頓推測光速在高密度下變高(而實際光速在高密度介質變低),惠更斯和其他人覺得正相反。但當時並沒有準確測量光速的條件。1802年,託馬斯·楊做實驗發現,當光波從較低密度介質移動進入較高密度介質之後,光波的波長會變短,他因此推論光波的運動速度會降低。1850年,萊昂·傅科的實驗得到了和波動理論同樣的結果。
光的電磁說
1845年,麥可·法拉第(Michael Faraday)發現當偏振光穿過施加了磁場的透明介質時,會發生偏振旋轉。這後來被稱為法拉第效應,它首次發現了光和電、磁的關係。在1846年,他推測光可能是沿磁感線衍生的某種形式的擾動。次年,法拉第提出光是一種高頻電磁振動,不需要介質也能衍生。
法拉第的研究啟發了詹姆斯·麥克斯韋(James Clerk Maxwell)研究電磁輻射和光。麥克斯韋發現自生電磁波會以恆定速度傳播,而且這個速度恰好等於光速。正是從這一點出發,麥克斯韋得出了光是一種電磁波的結論。20多年後,赫茲用實驗證實了電磁波的存在,測得電磁波的傳播速度的確與光速相同,同時電磁波也能夠產生反射、折射、幹涉、衍射、偏振等現象,從實驗中證明了光是一種電磁波。
由麥克斯韋的理論研究表明,空間電磁場是以光速傳播。這一結論已被赫茲的實驗證實。麥克斯韋,在1865年得出了結論:光是一種電磁現象。按照麥克斯韋的理論,c/v=√(εμ)。
式中c為真空中的光速。ν為在介電常數為ε和導磁係數為μ的介質中的光速。由折射率的定義n=c/v,知n=√(εμ)。
這個關係式給出了物質的光學常數,電學常數和磁學常數之間的關
系。當時從上述的公式中看不出n應隨著光的波長λ而改變,因而無法解釋光的色散現象。後來洛倫茲在1896年創立了電子論。從這一理論看,介電常數ε是依賴於電磁場的頻率,即依賴于波長而變的,從而搞清了光的色散現象。光的電磁理論能夠說明光的傳播、幹涉、衍射、色散、散射、偏振等許多現象,但不能解釋光與物質相互作用中的能量量子化轉換的性質,所以還需要近代的量子理論來補充。
粒子理論的新生
波動理論幾乎在所有光學和電磁學的現象中得到了驗證,這是19世紀物理學的一個重大成果。但到19世紀末期,有一些實驗現象要不是無法解釋,就是違反當時理論,其中一個爭議即為光電效應。實驗數據的結果指出,放出的電子能量與光線的頻率成正比,而非強度。更特別的是,當光線小於某一個最小頻率後,無論再加大強度,都不會產生感應電流,這現象似乎是違反了波動理論。許多年來,物理學家們嘗試尋找答案都無功而返,直到1905年愛因斯坦讓粒子理論重回歷史舞臺。由於太多的實驗現象為波動理論佐證,使得愛因斯坦的想法,在當時的物理學界受到了巨大質疑。然而愛因斯坦對光電效應的解釋最終得到了認同,並開啟了波粒二象性和量子力學兩扇大門。
光的波粒二象性
光電效應以及康普頓效應無可辯駁地證明了光是一種粒子,但是光的幹涉和光的衍射又表明光確實是一種波。光到底是什麼?光是一種波,同時也是一種粒子。光具有波粒二象性。這就是現代物理學的回答。
根據量子場論(或者量子電動力學),光子是電磁場量子化之後的直接結果。光的粒子性揭示了電磁場作為一種物質,是與分子、原子等實物粒子一樣,有其內在的基本結構(組成粒子)的。而在經典的電動力學理論中,是沒有「光子」這個概念的。
光源
發射(可見)光的物體叫做(可見)光源。太陽是人類最重要的光源。可見光源有熱輻射高壓光源(如白熾燈)、氣體放電光源(如霓虹燈、螢光燈)等。光源有分自然光、人造光。有生命的一定是自然光,如水母、螢火蟲等,沒有生命的不一定是人造光,如恆星、太陽等。
熱輻射光源是利用熱輻射來發光的。由熱輻射理論可知,溫度越高,發光效率也越高。白熾燈是愛迪生於1879年首先試製成功的。他選擇熔點高的碳做材料,製成碳絲,密封在抽成真空的玻璃管內,通以電流,碳絲就發熱發光。由於碳易揮發,工作溫度不能超過2100K。後來,選用熔點稍低於碳,但不易揮發的鎢做材料,工作溫度可達2400K,從而提高了發光效率。現代熱輻射的新光源有碘鎢燈、溴鎢燈,發光效率還要高。
氣體放電光源是利用電子在兩電極間加速運行時,與氣體原子碰撞,被撞的氣體原子受激,把吸收的電子動能又以輻射發光形式釋放出來,這叫做電致發光。不同氣體受激發光的頻率不同,利用這點可製成各種顏色的霓虹燈。
有的氣體放電光源,玻璃管中充的氣體受激發射的是不可見光。如水銀蒸氣在電場中受激發射的就是紫外線。我們可在玻璃管內壁上塗螢光粉,紫外線射到螢光粉上,再激發出可見光來,日光燈就是採用這一原理製成的。日光燈是電致發光和光致發光的綜合,它的發光效率比白熾燈好,但顯色性不好。現代新型的氣體放電照明光源有低壓鈉燈、高壓鈉燈等。
光源按發光原理分,除熱輻射發光、電致發光、光致發光外,還有化學發光、生物發光等。化學發光是在化學反應中以傳熱發光形式釋放其反應能量時發射的光;生物發光是在生物體內由於生命過程中的變化所產生的發光,如螢火蟲體內的螢光素在螢光素酶作用下與空氣發生氧化反應而發光。
另外,光波本身就是從原子、分子內輻射出的高頻電磁波,因此光波可以通過加速帶電粒子產生。如同步輻射光、軔致輻射、切倫科夫輻射、自由電子雷射等。經典物理學將發光看做原子內部帶電粒子(原子核與電子)因吸收外界能量而導致其電偶極矩發生周期性變化的結果。幾何光學、波動光學、非線性光學、同步輻射光等理論完全可以用經典電動力學中電磁場理論的相關內容來解釋。
生物波是人體及一切生物體自身發出的一種生物信息場,它是電磁波的一種形式。人體發生生物波的特定方式,是生物體向外界傳播能量與交換住所的一種形式,這種生物信息的存在、變化與生物體自身狀態密切相關,並可以放映出人體的健康狀態。科學實驗證明,有生命的生物體本身是一個天然的能量、信息源,它每時每刻都向其周圍環境發射著特定的生物波譜信號。
生物波是自生物信息場產生,並由生物體自行放射的波譜。根據科學儀器鑑定,人體放射的生物波波段為3~45微米,而生物波功能材料所反射之生物波波段集中在4~20微米,與人體自行放射的生物波(3~45微米)重疊。由於人體較易吸收與其頻率或波長相同的輻射能量,配合生物波功能材料對人體能量的屏障特性(能量反射效應),產生了近似生物波段的疊加共振效應,進而將生物能量反射回人體,使核酸與蛋白質被激發到高震動能級,進而促進新陳代謝、循環系統,達到調節人體肌能。
生物波對人體生命的作用:
⊙促進血液循環及改善微循環
⊙降低血液粘稠度
⊙活化細胞
⊙強化新陳代謝
⊙抗紫外線。生物波功能材料可以阻隔紫外線,產生物理防曬的效果,並因為生物波的微按摩作用,使肌膚美白、細嫩、有彈性,展現青春與自信。
⊙預防有害細菌的生長。生物波功能材料會改變細菌的生長環境,使細菌難以生存,提升個人衛生及防護。
⊙調節經絡平衡 生物波在3~45微米對人體沒有危害!有益於健康。但凡事不要過度!一切好的東西太多了反而對自身不好!
一切微生物都表現出各自的生物波,健康人體內長期容納著多種正常菌群,並表現出協調統一的生物波動,一旦這種波動失調,人體便呈病態。
生物波在一定的值範圍內可以對人體的疾病有防治作用。生物體的細胞如果無序的運動,而這種無序的運動在一定的時段內不能達到有序,那麼人體就容易生病,這個時候用生物波就可以讓人體細胞達到有序的運動,從而達到了防病治病的目的。
利用生物波技術也是人體生命健康管理的一種工具,讓這種有益於健康的生物波時刻呵護人體生命,不失為一種智慧。
生物波是把發生在生物有機體各層次上的節律活動。生物體內成千上萬的細胞在自組織地運動,從開始的無序運動逐步過渡到有序運動,當有序運動出現後,生物波就產生了。
人體遠紅外線
遠紅外線是一種較長波長的光線,遠紅外被稱為「生命光線」也叫「生育光線」,可以使人體細胞與遠紅外線產生共振,使皮下升溫3℃--5℃,改善微循環,通透淨化血管、減少管壁垃圾,對預防高血壓、血管動脈硬化有一定的預防和保健作用。近紅外線只能到達人體皮膚的表面,而無法到達人體內部,而遠紅外線有較強的滲透力和輻射力,具有顯著的溫控效應和共振效應,它易被物體吸收並轉化為物體的內能,對虛冷體質的人有較好的治療效果。遠紅外線被人體吸收後,可使體內水分子產生共振,使水分子活化,增強其分子間的結合力,從而活化蛋白質等生物大分子,使生物體細胞處於最高振動能級。由於生物細胞產生共振效應,可將遠紅外熱能傳遞到人體皮下較深的部分,以下深層溫度上升,產生的溫熱由內向外散發。這種作用強度,使毛細血管擴張,促進血液循環,強化各組織之間的新陳代謝,增加組織的再生能力,增強細胞活力,提高機體的免疫能力,調節精神的異常興奮狀態,從而起到增強人體生命健康的作用。
紅外線是在所有太陽光中最能夠深入皮膚和皮下組織的一種射線。由於遠紅外線與人體內細胞分子的振動頻率接近,「生命光波」滲入體內之後,便會引起人體細胞的原子和分子的共振,透過共鳴吸收,分子之間摩擦生熱形成熱反應,促使皮下深層溫度上升,並使微血管擴張,加速血液循環,有利於清除血管囤積物及體內有害物質,將妨害新陳代謝的障礙清除,重新使組織復活,促進酵素生成,達到活化組織細胞、防止老化、強化免疫系統的目的。所以遠紅外線對於血液循環和微循環障礙引起的多種疾病均具有改善和防治作用。此外,對人體內的一些有害物質,例如食品中的重金屬和其它有毒物質、乳酸、游離脂肪酸、脂肪和皮下脂肪、鈉離子、尿酸、積存在毛細孔中化妝品殘餘物等,就能夠藉助代謝的方式,不必透過腎臟,直接從皮膚和汗水一起排出,可避免增加腎臟的負擔。一般來說,燃料燃燒、電熱器具熱源等放出的紅外線多屬於近紅外線,由于波長較短,因此產生大量的熱效應,長期照射人體後會產生灼傷皮膚及眼睛水晶體等傷害。波長更短的其它電磁波如紫外線、X射線及γ射線等,會使原子上的電子產生游離,對人體更有傷害作用。遠紅外線則不然,由于波長較長,能量相對較低,所以使用時相對較少燙傷之危害。遠紅外線所放射出的低頻電磁波不同,家用電器所釋出的低頻電磁波可穿牆透壁及改變人體電流的特性,對人體產生危害性。遠紅外線在人體皮膚的穿透力僅有0.01至0.1釐米,人體本身也會放出波長約9微米的遠紅外線,所以和低頻電磁波不可混為一談。
促進眼部血液循環、促進眼部新陳代謝、緩解視 疲勞和眼乾澀、酸、 脹、迎風流淚等視疲勞症狀, 幫助眼部排出垃圾,緩解近視、遠視、弱視、散光等視力問題。
溫馨提示:
初次體驗,部分用戶可能會出現頭痛、頭昏腦脹、流眼淚,眼屎增多、眼部發脹、耳朵附近脹痛等阻塞疏通類感覺,皆屬正常調理反應。建議長期使用。常見舒服的感覺:眼睛有清涼感,看東西清晰,眼疲勞緩解,容易入睡,睡眠質量提高等等。
3大核心高科技技術:
遠紅外線:還你水靈靈大眼
8-14米的遠紅外線稱為 「生命光線」,能顯著改善人體 微循環,給我們潤眼補水; 地球上的海洋、山嶺、 土壤、森林等都可以 釋放紅外線。
生物微波:植物能量,補充細胞消耗
生物包括植物、動物、真菌等, 都是具有生命的,會產生新陳代謝 與生物波。實驗表明,旺盛的 植物可提供生名信息能量。並為構成生命體的原子等各微觀粒子以能量補充其消耗。
全息轉載:同頻共振,健康和諧
捕捉植物、天然礦石的信息和 頻率後給到眼睛;在獲得相應的 信息和頻率後,細胞原子和分子 的共振,可將不正常的 頻率進行校正。從而起到調節、改善並恢復眼鏡健康的作用。