微分方程重點一:常係數齊次線性微分方程

2020-12-04 勞逸結合者

上一篇文章講到了那化腐朽為神奇的常數變易法。小編也說過,在考試中,那一節不是重點。

微分方程前面的都是一些基礎,如果是一些和其他題型結合在一起的題目的話,可能會考前面的微分方程內容,比如說求知道函數的全微分,讓求原函數這類的。

但是如果微分方程考大題的話,就是考二階常係數非齊次線性微分方程了。之前講的微分方程解的結構是基礎,主要是為了說明做題時我們需要求什麼。(即求齊次的通解,和非齊次的特解)

這一章就先講常係數齊次線性微分方程的解如何求。

二階常係數齊次線性微分方程:

主要思路:把求解問題轉換為求特徵方程的問題,然後再代公式即可。這一塊把以e為低的指數函數看作方程解的基礎,對它進行一系列的變化。(主要是因為微分方程的解很多,並且這樣的指數函數很特殊)

方程形式:

特徵方程:p,q皆為常數。p是一次項的係數,q是常數項。

這裡按照特徵方程解的情況不同,總結出不同的結果。具體推導過程在高數課本p339.其實這裡只需要記住公式就夠用了,考試對推導過程不做要求。

特徵方程解的情況:

1.方程有兩個不同的實數根

通解形式:

2.方程有兩個相同的實數根

通解形式:

3.方程的根為復根

通解形式:

總結:

第一步:寫出微分方程的特徵方程

第二步:求出微分方程的兩個根

第三步:根據特徵方程的兩個根的不同情況,按照下表寫出微分方程的通解

怎麼樣,求通解還是簡單吧。但是下一章的求特解可就比較難了,但是也是微分方程篇最後的重點了。

好了,光說不練假把式。接下來還是連一些題吧。

1.求下列微分方程的通解

2.求下列微分方程的通解

3.求下列微分方程的通解

4.求下列微分方程的通解

5.求下列微分方程滿足所給初值條件的特解

6.求下列微分方程滿足所給初值條件的特解

小夥伴們加油哦!

相關焦點

  • 微分方程重點二:常係數非齊次線性微分方程
    小編在之前的文章:微分方程重點一中講了常係數齊次線性微分方程的內容。那是微分方程難點的一半,接下來的內容是另外一半。讓我們在講解之前,先來對一下答案。題目在微分方程重點一:常係數齊次線性微分方程中。就是這裡給出的一階導數條件值也是要求出一階導數,然後再代入。6.和第五題一樣,還是按照步驟做,然後再代入條件即可得出答案。接下來就是講微分方程的最後一個重點了,也是考試微分方程中最後的部分了,不過既然是最後一部分,那麼就有最後一部分的難。
  • 常微分方程
    >(3)n解齊次線性微分方程的所有解構成一個n維的線性空間(4)基本解組的以任意常數為係數的線性組合構成齊次線性微分方程的通解(5關於解的方法:線性微分方程的解法我們主要介紹了五種常用的方法,它們是:(1) 求常係數齊次線性微分方程的基本解組的特徵根法(或歐拉待定指數函數法)
  • 常微分方程:線性微分方程解的三個重要特徵
    前一篇《帶你走進微積分的堂學習:一階線性微分方程式的基礎原理》詳細討論了線性微分方程的結構以及通解特性,本篇我們藉此機會指出一階線性微分方程解的三個重要特徵1)有一階線性微分方程>的通解是可以看出,它等於(1)的一個特解(對應於上式的C=0)再加相應的齊次線性(2)的通解,因此如果求得非齊次線性微分方程(1)的一個特解為y=φ1(x)和相應的齊次線性方程(2)的通解,則(1)的通解為2)設a(x)和b(x)在區間α<x<β上連續,則由上述通解公式可知
  • 常微分方程的級數解
    如果方程中只含有對未知函數的一個自變量的導數,這個方程就被稱為常微分方程,如果方程中含有對未知函數的多個自變量的導數,這個方程就是偏微分方程。求解微分方程的基礎是求解常微分方程,含有任意個自變量的偏微分方程可以通過某種途徑轉化成多個常微分方程。在常微分方程中,最常見的是二階常微分方程,即含有對未知函數的自變量求二階導數的微分方程。
  • 【暑期必備46個知識點:26】:二階常係數線性微分方程
    你好,歡迎來到《46個知識點》欄目,我是資深數學家老編~視頻索引:本知識點的視頻講解位於宇哥2019考研數學網協班中基礎班第五講:二階常係數線性微分方程01 12:34-36:06今天是微分方程的最後一節,講的也是微分方程最難的部分,二階常係數線性微分方程
  • 常見微分方程求解公式
    如果在校期間,持之以恆,堅持三到四年(公眾號每年都會從高數的第一章到最後一章,通過一天一題的方式,進行知識回顧講解。對於您來講,相當於在校期間每年回顧一遍高數知識),那麼,考研時,高數還會成為短板嗎?也不會發生當您要決定考研的時候,高數知識都忘記乾淨了,還要慢慢撿回來,手忙腳亂的情況。
  • 常微分方程|第四章 高階微分方程--常數變易法
    ❝之前討論了齊次線性微分方程的通解結構,下面我們來討論非齊次微分方程的通解結構。❞考慮n階非齊次線性微分方程:我們知道齊次微分方程:就為其特殊形式,所以兩者之間解的性質與結構有很密切的聯繫。由上面的定理我們知道,要得到非齊次線性微分方程的通解,我們需要得到:(1)的一個解,以及(2)的通解,我們下面就來介紹第二章曾用過的方法——常數變易法。
  • 描述物質運動變化的數學學科:常微分方程、偏微分方程
    常微分方程   如果微分方程中出現的未知函數只含一個自變量,那麼該類微分方程就是常微分方程。常微分方程的通解構成一個函數族,主要研究方程或方程組的分類及解法、解的存在性和唯一性、奇解、定性理論等等內容。
  • 常微分方程中的重要方程:黎卡提方程(一階二次非線性微分方程)
    前面我們了解了什麼是一階線性微分方程,可分離變量微分方程,以及齊次微分方程,本篇講升上一個高度,一階微分方程中的二次微分方程義大利數學家在17世紀提出了著名的「黎卡提方程」,這個方程看上去挺簡單的,但分析起來相當複雜
  • 最簡單的常微分方程:變量分離微分方程
    常微分方程是微積分學方程中常見的,應用非常廣泛的方程,下面就來討論常微分方程中最簡單的變量分離微分方程。設一階微分方程式:其中f(x,y)是給定的函數,我們要做的工作是求微分方程的解y=y(x),可是一般不能用初等方法來解出這個微分方程,但是當微分方程的右端f(x,y)取某幾種特殊的類型時,就可用初等積分法求解。本篇講一個重要的特殊情形此時開篇中的微分方程就變成了這樣的方程稱之為變量分離的方程。
  • 一階線性微分方程
    做數學題有三種難:有一種難叫我想不起來了,有一種難叫我知道不會算,還沒有一種難就是我壓根不知道;一階線性微分方程就是最後一種,是不是很多小夥伴有這種感覺!別激動這個玩意,屬於大學微積分的知識,數學招教考試中會考嗎?菏澤的小夥伴要注意嘍!趕快學起來吧!一階線性線性微分方程:形如
  • 我們一起學習什麼是「齊次微分方程」
    在前面所講的變量分離的微分方程和線性微分方程是可以用初等積分法求解的標準方程,在微分方程的應用中,出現的方程是多種多樣的,如果我們能夠找到一種初等的變換,把有關的微分方程化為兩種標準方程之一,那麼原來的方程也就得解了,至於怎麼找到這種初等變換,卻無償規可循,只能說是「熟能生巧
  • 《歐拉方程及微分方程建模》思路與方法
    一、歐拉方程及其求解方法具有結構將原歐拉方程中xky(k)全部用上式代入,則可以將原方程轉化為以y為函數,u為自變量的常係數線性微分方程即於是,就可以通過常係數線性微分方程的求解方法求該方程的通解了。 二、常係數線性微分方程組舉例常係數線性微分方程組解法步驟:第一步:用消元法消去其他未知函數 , 得到只含一個函數的高階方程; 第二步:求出此高階方程的未知函數;
  • 高數複習重點解析之——微分方程與無窮級數
    考研複習亦不例外:除了結合考綱把基礎打牢,還需適當總結方法、關注重點。針對考生需求,教研老師精心準備了2014年暑期考研數學複習重點解析,以下是高數微分方程與無窮級數部分,供參考。 一、微分方程 微分方程可視為一元函數微積分學的應用與推廣。該部分在考試中以大題與小題的形式交替出現,平均每年所佔分值在8分左右。
  • 《常見一階微分方程》類型及其一般求解思路與步驟
    一、《高等數學》一階微分方程分類:第一類:可分離變量的微分方程及其分離變量的求解方法,包括齊次微分方程(換元法)。 第二類:一階線性微分方程,其中齊次線性微分方程的求解歸結為可分離變量的微分方程;而非齊次線性微分方程基於常數變易法,或稱為待定函數法,直接得到非齊次線性微分方程的通解或者基於線性微分方程解的結構求得其一個特解來求通解:非齊次線性微分方程的特解
  • 2011年考研數學高數預測:常微分方程
    2011年考研數學高數預測:常微分方程
  • 常微分方程有哪些著作?
    常微分方程方面的著作非常多,就簡要地介紹幾本比較著名的。
  • 微分方程:極富生命力,包羅萬象的數學分支
    常微分方程如果微分方程中出現的未知函數只含一個自變量,那麼該類微分方程就是常微分方程。常微分方程的通解構成一個函數族,主要研究方程或方程組的分類及解法、解的存在性和唯一性、奇解、定性理論等等內容。常微分方程的發展經歷了幾個階段:將求通解作為微分方程的主要目標,因為只要求出通解的表達式,那麼解的性質等問題都將迎刃而解;實際的研究發現,在實際中大部分情況是不能夠求出通解的,於是研究重點轉移到定解問題上來。
  • 2016考研數學重點預測:常微分方程的應用
    2016考研衝刺複習階段,又到了各大教師預測重點的時刻了,廣大考生要注意關注,複習不能斷,重要預測也不可錯過。下面是新東方網考研頻道教師張宇老師為大家預測的考研數學重點,抓緊研究研究!
  • [基礎理論]偏微分方程的類型
    偏微分方程(PDE)是真實世界常見現象的一種數學語言描述,二階偏微分方程始終是重要的研究對象。