全小分子有機太陽能電池研究取得進展

2020-12-03 同花順財經

圖片來源:網際網路

有機太陽能電池作為新一代太陽能電池技術近年來受到廣泛關注。相比較於傳統的矽基太陽能電池,有機太陽能電池具有成本低、柔性、可大面積印刷製備等優點。

目前製備高效有機太陽能電池的主流策略是使用聚合物給體和非富勒烯受體材料構建活性層。但聚合物材料在製備過程中通常存在分子量和分散度難以精確控制、難提純、材料的批次穩定性差等問題,相應製備的有機太陽能電池效率的重複性降低,不利於大規模商業化應用。

而有機小分子的分子量確定,可以精確合成,易於提純,批次穩定性好,有利於大規模製備。因此,全小分子有機太陽能電池具有較高的商業化應用潛力。但由於全小分子電池給體和受體都為小分子結構,使得其難以形成像聚合物薄膜那樣較為理想的雙連續互穿網絡形貌。過強的給體結晶會使給體與受體嚴重共混,而太弱則不利於給體分子間緊密的π-π堆積,從而降低電荷傳輸。所以全小分子電池中難以調控的相形貌,致使其光電轉化效率一直處於較低水平。

近期,中國科學院寧波材料技術與工程研究所葛子義團隊報導了一種具有13.34%光電轉化效率的非富勒烯全小分子有機太陽能電池,這是目前已報導的全小分子有機太陽能電池的最高效率之一。

研究發現使用雙氟原子修飾基於苯並二噻吩(BDT)單元的小分子給體的側基,能有效提升器件電壓,降低分子結晶性,改善相分離形貌;同時氟原子的引入能促使分子間更緊密的π-π堆積,從而使器件的效率獲得顯著提升。

該研究進一步系統分析了不同取代位置和個數的氟化對於器件性能和分子堆積的影響,發現單氟取代對小分子的π-π堆積影響較小,並且其主要通過降低分子的HOMO能級來提升器件性能。

而BDT連接的上下噻吩側基的雙氟化,則有利於形成F-H的非價鍵力作用,分子扭轉角最小,最利於材料的共軛平面堆積,進而得到最高的光電轉化效率。相關成果以13.34%Efficiency Non-fullerene All-Small-Molecule Organic Solar Cells Enabled by Modulating the Crystallinity of Donors via a Fluorination Strategy為題發表在《德國應用化學》雜誌上。

來源: pv-tech

相關焦點

  • 化學所在三元有機太陽能電池活性層形貌控制方面取得進展
    三元有機太陽能電池保持單節電池結構,在二元活性層中引入吸收互補的第三組分,增強光譜吸收。儘管三元電池取得了一定成功,但仍面臨著嚴峻的挑戰,其核心問題在於對三元共混薄膜難以實現清晰、有效的形貌控制,用以同時保證高效的激子解離和電荷傳輸,因此,已報導三元電池性能提升幅度較低。
  • 科學網—揭示全小分子有機太陽能電池設計思路
    本報訊(記者劉曉倩)1月22日,記者從蘭州大學獲悉,該校化學化工學院張浩力課題組發現的具有雙吸電子單元的給體分子設計策略,可大幅提升全小分子有機太陽能電池使用效率
  • 有序液晶給體BTR-Cl「點亮」全小分子有機太陽能電池
    近些年來,隨著材料的創新和器件不斷優化,有機太陽能電池光電轉化效率也在步步攀升。中國科學院重慶綠色智能技術研究院&中國科學院大學重慶學院陸仕榮研究團隊,聯合重慶大學孫寬研究團隊設計合成了一種新型液晶小分子給體材料BTR-Cl。
  • 有機小分子光伏材料研究獲進展
    記者近日從中科院化學所獲悉,該所有機固體重點實驗室的研究人員在高效有機小分子光伏材料的研究上取得系列進展,並在近期受邀為英國皇家化學會
  • 有機太陽能電池超快動力學研究取得進展
    近期,中國科學院上海光學精密機械研究所強場雷射物理國家重點實驗室和蘇州大學合作,在有機太陽能電池超快動力學研究方面取得進展,研究團隊利用飛秒瞬態吸收技術研究了有機太陽能電池活性層材料,解釋了DIO添加劑對電池效率提升的貢獻,相關成果發表在《納米材料》(nanomaterials)上。
  • 三元有機太陽能電池活性層形貌控制研究獲進展
    具有帶隙高度可調、質輕、柔性、低成本等顯著特點的有機太陽能電池是新一代光伏技術的重要發展方向。
  • 有機太陽能電池研究取得進展
    面對能源的巨大需求和日趨嚴重的環境汙染問題,太陽能是大自然賦予人類的一個取之不盡、用之不竭的能源寶庫,新型的太陽能電池技術得到了廣泛的重視。有機太陽能電池(OSC)具有質量輕、超薄、柔性、易於大面積製備等諸多優點,在可攜式、柔性電池、光伏建築供能等領域具有廣闊的應用前景。
  • 中南大學鄒應萍教授課題組:單結有機太陽能電池能量轉換效率新紀錄
    論文連結:https://www.sciencedirect.com/science/article/pii/S2542435119300327相關進展中科院化學所李永舫院士課題組:全小分子非富勒烯有機太陽電池效率超過10%中科院化學所李永舫院士和張志國副研究員:為高性能全聚合物太陽能電池構建強吸收窄帶隙聚合物受體
  • 最高效全小分子有機太陽能電池之一
    蘇州大學李永舫課題組合理設計了一種新型的寬帶隙給體小分子材料,基於此的器件表現出13.9%的目前最高效率之一,且非輻射複合損耗非常小,為有機太陽能電池材料的設計提供了另一種思路。基於共軛聚合物或小分子的電子給體與小分子受體,組成的給受體本體異質結溶液製備法的有機太陽能電池被廣泛研究。最近由p型共軛聚合物給體與n型非富勒烯小分子受體而成的有機太陽能電池功率轉換效率突破了16%,具有光明前程。但是由於聚合物的批次差異問題,不可避免的會導致器件的重複性較差。
  • 化學所李永舫課題組在有機小分子給體光伏材料的研究中取得新進展
    有機太陽能電池在製備柔性、半透明以及室內光伏等方面具有突出優勢。相比於聚合物半導體光伏材料,有機小分子半導體光伏材料具有結構確定、易於純化等優點。然而,由於基於小分子給體和小分子受體的全小分子體系活性層形貌調控方面的困難,全小分子有機太陽能電池(SM-OSC)的光電轉換效率落後於聚合物太陽能電池(PSC)。
  • 化學所在有機小分子光伏材料研究方面取得系列進展
    有機太陽能電池材料分為小分子和高分子兩種,目前效率最高的是高分子給體與富勒烯受體共混體系。然而,高分子的分子結構、分子量、純度不確定,會帶來不同批次的材料性能間有差異,因而有可能在將來導致工業化生產時批次的不穩定性。和聚合物材料相比,有機小分子太陽能電池材料則具有確定的分子結構和分子量,並且比較容易分離提純,純度高,製備過程中有很好的批次穩定性。
  • 高效率有機太陽能電池研究取得進展
    相對於傳統的無機太陽能電池,新一代的有機太陽能電池(OPV)具有獨特的優勢和應用前景,提高其光電轉化效率是該領域的主要研究內容之一。
  • 上海光機所在有機太陽能電池超快動力學方面取得進展
    近期,中國科學院上海光學精密機械研究所強場雷射物理國家重點實驗室和蘇州大學合作,在有機太陽能電池超快動力學研究方面取得進展,研究團隊利用飛秒瞬態吸收技術研究了有機太陽能電池活性層材料,解釋了DIO添加劑對電池效率提升的貢獻,相關成果發表在《納米材料》(nanomaterials)上。
  • 綜述:半透明有機太陽能電池的研究進展
    半透明有機太陽能電池因其在發電窗戶、建築集成光伏、農業溫室等領域的巨大潛力而受到越來越多的關注。 本文綜述了有機材料、半透明頂電極和器件工程的最新進展,指出了實現半透明有機太陽能電池所面臨的挑戰,以促進該領域的發展。
  • 福建物構所鈣鈦礦太陽能電池研究取得進展
    近年來,有機無機雜化鈣鈦礦太陽能電池發展迅速,其光電轉化效率從3.8%發展到目前25.5%的認證效率,被視為最具有應用潛力的新型高效率太陽能電池之一。雖然鈣鈦礦太陽能電池具有較高光電轉換效率,可與多晶矽薄膜電池媲美,但電池的長期穩定性未達到商業化要求。
  • 廈大夏海平教授在碳龍合成並在有機太陽能電池應用研究取得進展
    廈門大學夏海平教授課題組碳龍化學研究取得新進展,利用金屬卡拜與炔烴的新反應,成功地合成了一類金屬d軌道參與π共軛的全新共軛體系並在有機太陽能電池領域得到應用,相關成果以「Addition of alkynes and osmium carbynes towards functionalized dπ–pπ conjugated
  • 降低有機太陽能電池非輻射複合損失研究獲進展
    近日,中國科學院國家納米科學中心研究員周二軍與北京航空航天大學教授孫豔明、東華大學教授馬在飛合作,在降低有機太陽能電池的非輻射複合損失研究中取得進展。相關研究成果發表在Advanced Materials上。
  • 中科院在有機太陽能電池研究方面取得進展
    近日,中國科學院國家納米科學中心納米系統與多級次製造重點實驗室研究員魏志祥、呂琨、博士鄧丹和西安交通大學教授馬偉等合作,設計併合成的可溶性有機小分子光伏材料,通過活性層形貌優化,獲得了11.3%的光電轉換效率,這是目前文獻報導的可溶性有機小分子太陽能電池的最高效率,也是有機太陽能電池的最高效率之一。
  • 哈工大染料敏化太陽能電池研究取得新進展
    日前從城市水資源與水環境國家重點實驗室獲悉,哈爾濱工業大學理學院化學系李欣教授課題組與澳大利亞莫納什大學利昂·斯皮西亞教授合作開展了染料敏化太陽能電池的研究,相關工作近期取得重要進展,最新研究成果《十八烷基三氯矽烷表面改性調控基於水系染料敏化太陽能電池的電子複合》於近日發表在國際著名期刊
  • 化學所在非富勒烯型聚合物太陽能電池研究中取得系列進展
    化學所在非富勒烯型聚合物太陽能電池研究中取得系列進展 2016-07-01 化學研究所 【字體此後,該實驗室的研究人員採用聚合物PBDB-T與多種非富勒烯受體材料共混製備光伏器件,研究結果表明,該聚合物十分適合用於製備高效率的非富勒烯型聚合物太陽能電池。基於此,科研人員取得了一系列研究進展Org. Electron.