三元有機太陽能電池活性層形貌控制研究獲進展

2020-12-03 科學網

 

具有帶隙高度可調、質輕、柔性、低成本等顯著特點的有機太陽能電池是新一代光伏技術的重要發展方向。有機太陽能電池受限於有機材料「窄吸收」特性,二元共混薄膜難以實現對太陽能的有效寬光譜利用,並且始終存在相共混(利於激子解離)和相分離(利於電荷傳輸)這對基礎性矛盾,制約了有機光伏器件性能的進一步突破。三元有機太陽能電池保持單節電池結構,在二元活性層中引入吸收互補的第三組分,增強光譜吸收。儘管三元電池取得了一定成功,但仍面臨著嚴峻的挑戰,其核心問題在於對三元共混薄膜難以實現清晰、有效的形貌控制,用以同時保證高效的激子解離和電荷傳輸,因此,已報導三元電池性能提升幅度較低。 

 

在國家自然科學基金委、科技部和中國科學院的支持下,中國科學院化學研究所有機固體院重點實驗室課題組科研人員利用前期發展的噻吩並噻吩類光伏受體新材料NITI(Adv. Mater. 2017, 29, 1704510.),合理選擇二元體系,構築了具有「分級結構」的三元活性層形貌,實現了光電轉化效率的大幅提升,闡釋了形貌對光電過程和器件參數的決定性影響,相關論文發表在 

Nature Energy 

雜誌上(DOI:10.1038/s41560-018-0234-9)。 

 

三元共混薄膜分別選取了強結晶、寬帶隙電子給體材料BTR,弱結晶、窄帶隙電子受體材料NITI和具有強聚集和優異電子傳輸特性的富勒烯受體PC71BM,三者形成了有利的梯度電子結構和互補光吸收。經器件優化製備,上述三元器件在300nm最佳膜厚下取得最高13.63%(平均 13.20%)光電轉換效率,相對二元器件性能提升幅度高達51%和100%,這不僅是全小分子太陽能電池的最高性能記錄,也是性能最優的厚膜 (>200 nm) 有機太陽能電池。他們聯合上海交通大學和瑞典林雪平大學相關課題組合作,提出「分級結構」的三元活性層新形貌:NITI和BTR高度共混,形成有利於電荷分離的小相分離精細結構,PC71BM在BTR和NITI共混區外圍形成大尺度的相分離結構和有利的face-on堆積。研究者證明了NITI受體在光電過程中發揮了重要作用,它一方面抑制BTR和PC71BM的接觸,使得三元器件獲得了和二元器件 (BTR:NITI) 相當的低損耗開路電壓;PC71BM在活性層中形成了電子傳輸高速通路,將NITI分離的電子有效輸運至電極,從而同時保證了高的外量子效率(EQEs) 和填充因子(FF)。(來源:中科院化學所)

 

 

圖1. 化學結構、能級排布、吸收光譜和器件性能

 

總體而言,該工作設計並實現了有機三元電池活性層新形貌,充分發揮了小分子和富勒烯電子受體在有機太陽能電池中的獨特優勢,同時實現了高開壓、高電流和高填充因子,為有機三元電池活性層形貌調控提供了新思路。 

 

 

圖2. 分級結構示意圖和有機太陽能電池性能統計

 

 

 

 

 

特別聲明:本文轉載僅僅是出於傳播信息的需要,並不意味著代表本網站觀點或證實其內容的真實性;如其他媒體、網站或個人從本網站轉載使用,須保留本網站註明的「來源」,並自負版權等法律責任;作者如果不希望被轉載或者聯繫轉載稿費等事宜,請與我們接洽。

相關焦點

  • 化學所在三元有機太陽能電池活性層形貌控制方面取得進展
    三元有機太陽能電池保持單節電池結構,在二元活性層中引入吸收互補的第三組分,增強光譜吸收。儘管三元電池取得了一定成功,但仍面臨著嚴峻的挑戰,其核心問題在於對三元共混薄膜難以實現清晰、有效的形貌控制,用以同時保證高效的激子解離和電荷傳輸,因此,已報導三元電池性能提升幅度較低。
  • 科學網—揭示全小分子有機太陽能電池設計思路
    本報訊(記者劉曉倩)1月22日,記者從蘭州大學獲悉,該校化學化工學院張浩力課題組發現的具有雙吸電子單元的給體分子設計策略,可大幅提升全小分子有機太陽能電池使用效率
  • 中科院在有機太陽能電池研究方面取得進展
    近日,中國科學院國家納米科學中心納米系統與多級次製造重點實驗室研究員魏志祥、呂琨、博士鄧丹和西安交通大學教授馬偉等合作,設計併合成的可溶性有機小分子光伏材料,通過活性層形貌優化,獲得了11.3%的光電轉換效率,這是目前文獻報導的可溶性有機小分子太陽能電池的最高效率,也是有機太陽能電池的最高效率之一。
  • 綜述:聚合物/富勒烯太陽能電池的研究進展
    ,可溶液製備的聚合物太陽能電池因其具有成本低,重量輕、柔性好、顏色可調、易於製備大面積、半透明電池板等獨特的優點而成為近年來可再生能源研究領域的熱點。Heeger教授組發現了共軛聚合物和富勒烯之間存在超快的電荷轉移,並在1995年實現了由溶液製備的聚合物/富勒烯衍生物PCBM體異質結太陽能電池。此後,在過去的20餘年裡,人們先後在共軛聚合物吸光材料的設計與合成、器件的工作機理、活性層形貌與電子給-受體分相行為的調控、界面層的影響與低成本器件工藝等方面做了大量的研究並取得了很多突破性的進展,使得聚合物太陽能電池的效率提高至11%左右。
  • 穩定、高效的三元有機太陽能電池
    北極星太陽能光伏網訊:相比傳統基於無機材料的光伏器件,有機太陽能電池的優勢明顯,例如成本低、質量輕、易加工、可製成柔性器件等等。儘管問世初期有機太陽能電池的能量轉換效率(PCE)比較低,但是經過近年來的發展,特別是非富勒烯受體(NFA)材料的研究進展,有機光伏器件的性能節節攀升。例如,中科院化學所近期就報導了效率接近18%的單結有機光伏電池(Adv.
  • 用於提高半透明有機太陽能電池三元共混活性層電荷高效運輸的研究
    半透明有機太陽能電池(OSCs)具有高光電轉換效率(PCE),在車載集成和建築一體化光伏發電方面具有巨大的應用潛力。雖然不透明有機太陽能電池的最高光電轉換效率(PCE)已超過17%,但其平均可見光透過率(AVT)與集光能力之間的相互關係阻礙了半透明有機太陽能電池(STOSCs)PCE值的提高。中國科學院福建物質結構研究所鄭慶東團隊開發了一種階梯型二硫代萘基受體(DTNIF),當其與PBDB-T.39的寬隙帶共聚物配對時,其PCE值為8.73%。
  • 對聚合物批次不敏感的高性能有機太陽能電池
    ,報導了一種對聚合物批次不敏感的高性能有機太陽能電池的製備方法。 有機太陽能電池由於輕質、半透明、可溶液加工等優點受到了科研界和工業界的廣泛關注。調控活性層形貌使其形成理想的雙連續互穿網絡結構是製備高性能有機太陽能電池的關鍵。而在活性層的成膜過程中,成膜動力學影響著薄膜的最終形貌。混合溶液旋塗法是實驗室製備太陽能電池活性層的最常用方法,其成膜速度快;與旋塗法相比,工業印刷法成膜速度相對較慢。
  • 南開大學:有機太陽能電池研究獲新突破
    本報天津8月10日訊(記者 陳欣然)記者今天從南開大學獲悉,該校陳永勝教授團隊在有機太陽能電池領域研究中獲突破性進展。他們設計和製備的疊層有機太陽能電池材料和器件,實現了17.3%的光電轉化效率,刷新了有機/高分子太陽能電池光電轉化效率的世界最高紀錄。
  • 中南大學鄒應萍教授課題組:單結有機太陽能電池能量轉換效率新紀錄
    論文連結:https://www.sciencedirect.com/science/article/pii/S2542435119300327相關進展中科院化學所李永舫院士課題組:全小分子非富勒烯有機太陽電池效率超過10%中科院化學所李永舫院士和張志國副研究員:為高性能全聚合物太陽能電池構建強吸收窄帶隙聚合物受體
  • 新型受體製備低電壓損耗高效三元有機太陽能電池
    在過去的十年裡,本體異質結(BHJ)有機太陽能電池(OSCs)取得了快速的發展。單結器件的光電轉換效率(PCE)超過16%,疊層器件的光電轉換效率(PCE)超過17%。在三元器件中,選擇三個具有互補吸收和適當能級的活性層組分對於獲得良好的器件性能至關重要。 此外,光生載流子的能量損耗也是決定光伏性能的重要因素。 為了降低三元器件的損耗,應適當調整吸光活性材料的LUMO和HOMO水平。
  • 科研人員在大面積印刷有機太陽能電池研究領域取得重要進展
    有機太陽能電池因為其柔性、質輕、可以溶液法加工等特點長期以來受到廣泛的關注。得益於非富勒烯受體的快速發展,有機太陽能電池單節效率已經突破18%。然而目前高性能的器件大多通過實驗室中小面積旋塗成膜製備得到,為了進一步適應商業化應用的要求,發展大面積印刷加工技術迫在眉睫。
  • 有機太陽能電池研究取得進展
    面對能源的巨大需求和日趨嚴重的環境汙染問題,太陽能是大自然賦予人類的一個取之不盡、用之不竭的能源寶庫,新型的太陽能電池技術得到了廣泛的重視。有機太陽能電池(OSC)具有質量輕、超薄、柔性、易於大面積製備等諸多優點,在可攜式、柔性電池、光伏建築供能等領域具有廣闊的應用前景。
  • 西安交通大學科研人員在大面積印刷有機太陽能電池研究領域取得重要進展
    有機太陽能電池因為其柔性、質輕、可以溶液法加工等特點長期以來受到廣泛的關注。得益於非富勒烯受體的快速發展,有機太陽能電池單節效率已經突破18%。然而目前高性能的器件大多通過實驗室中小面積旋塗成膜製備得到,為了進一步適應商業化應用的要求,發展大面積印刷加工技術迫在眉睫。狹縫擠出成膜結合卷對卷加工是最有望實現有機太陽能電池大面積印刷的技術。
  • 有機太陽能電池超快動力學研究取得進展
    近期,中國科學院上海光學精密機械研究所強場雷射物理國家重點實驗室和蘇州大學合作,在有機太陽能電池超快動力學研究方面取得進展,研究團隊利用飛秒瞬態吸收技術研究了有機太陽能電池活性層材料,解釋了DIO添加劑對電池效率提升的貢獻,相關成果發表在《納米材料》(nanomaterials)上。
  • 全小分子有機太陽能電池研究取得進展
    圖片來源:網際網路有機太陽能電池作為新一代太陽能電池技術近年來受到廣泛關注。相比較於傳統的矽基太陽能電池,有機太陽能電池具有成本低、柔性、可大面積印刷製備等優點。目前製備高效有機太陽能電池的主流策略是使用聚合物給體和非富勒烯受體材料構建活性層。但聚合物材料在製備過程中通常存在分子量和分散度難以精確控制、難提純、材料的批次穩定性差等問題,相應製備的有機太陽能電池效率的重複性降低,不利於大規模商業化應用。
  • 化學所李永舫課題組在有機小分子給體光伏材料的研究中取得新進展
    有機太陽能電池在製備柔性、半透明以及室內光伏等方面具有突出優勢。相比於聚合物半導體光伏材料,有機小分子半導體光伏材料具有結構確定、易於純化等優點。然而,由於基於小分子給體和小分子受體的全小分子體系活性層形貌調控方面的困難,全小分子有機太陽能電池(SM-OSC)的光電轉換效率落後於聚合物太陽能電池(PSC)。
  • 三元有機太陽能電池:效率17.22%
    近年來,三元策略在提高有機太陽能電池性能方面已展露出很大的潛力,成為有機光伏領域的研究熱點。張福俊教授課題組長期專注於三元有機光伏器件物理方面的研究,提出了研究三元體系中激子和載流子動力學的新方法、新手段,以及理解合金模型的微觀機制。
  • 南科大郭旭崗團隊在太陽能電池領域取得系列研究進展
    近期,南方科技大學材料科學與工程系(簡稱「材料系」)教授郭旭崗課題組在有機和鈣鈦礦太陽能電池領域取得重要研究進展,先後在材料和化學領域高水平期刊連續發表6篇論文,包括《先進材料》(Advanced Materials) 2篇,《中國科學:化學》(SCIENCE CHINA Chemistry
  • 綜述:半透明有機太陽能電池的研究進展
    半透明有機太陽能電池因其在發電窗戶、建築集成光伏、農業溫室等領域的巨大潛力而受到越來越多的關注。 本文綜述了有機材料、半透明頂電極和器件工程的最新進展,指出了實現半透明有機太陽能電池所面臨的挑戰,以促進該領域的發展。
  • FOE虛擬專刊 | 太陽能電池研究新進展
    本期虛擬專刊選取了Frontiers of Optoelectronics期刊2018-2019年發表的太陽能電池相關的文章,這些文章介紹了華中科技大學武漢光電國家研究中心和其他研究單位在鈣鈦礦太陽能電池、有機太陽能電池、染料敏化太陽能電池,以及它們的材料、器件結構、製作工藝、測試分析等方面的部分研究進展。希望這些研究工作能給從事太陽能電池相關研究的讀者們帶來一些有益的啟示。