1. 穀氨醯胺代謝控制毛囊幹細胞命運的可逆性和長期維持
小編一句話:防脫生發,穀氨醯胺,「咣」~,很黑,很亮,很柔。中文摘要
幹細胞存在於對其功能至關重要的特殊微環境中。激活後,毛囊幹細胞(HFSCs)離開其微環境,生成外根鞘(ORS),但一部分ORS的子代會返回原來的微環境並恢復幹細胞(SC)狀態,這種細胞命運可逆性的機制尚不清楚。本研究指出在HFSC譜系早期發展過程中,ORS細胞返回SC狀態需要抑制早期HFSC譜系發育過程中糖酵解到氧化磷酸化和穀氨醯胺代謝的代謝轉換。HFSC命運可逆性和穀氨醯胺代謝受其微環境中mTORC2(哺乳動物靶標雷帕黴素複合物2)-Akt信號軸的調控。敲除mTORC2會導致HFSC微環境重建失敗、毛囊再生缺陷、進而影響HFSCs的長期維持。總之,本研究強調了在器官內穩態中對SC代謝狀態進行時空調控的重要性。mTORC2簡介
Glutamine Metabolism Controls Stem Cell Fate Reversibility and Long-Term Maintenance inthe Hair Follicle
發表單位:Max Planck Institute for Biology of Ageing, Cologne, Germany
PI: Sara A. Wickström,一作:Christine S. Kim
Stem cells reside in specialized niches that are critical for their function. Upon activation, hair follicle stem cells (HFSCs) exit their niche to generate the outer root sheath (ORS), but a subset of ORS progeny returns to the niche to resume an SC state. Mechanisms of this fate reversibility are unclear. We show that the ability of ORS cells to return to the SC state requires suppression of a metabolic switch from glycolysis to oxidative phosphorylation and glutamine metabolism that occurs during early HFSC lineage progression. HFSC fate reversibility and glutamine metabolism are regulated by the mammalian target of rapamycin complex 2 (mTORC2)-Akt signaling axis within the niche. Deletion of mTORC2 results in a failure to re-establish the HFSC niche, defective hair follicle regeneration, and compromised long-term maintenance of HFSCs. These findings highlight the importance of spatiotemporal control of SC metabolic states in organ homeostasis.
原文連結:https://www.cell.com/cell-metabolism/fulltext/S1550-4131(20)30424-1
2.暴露於靜電磁場和電場可以治療2型糖尿病
中文摘要
異常的氧化還原信號是許多慢性代謝性疾病的病理生理學基礎,其中就包括T2D (2型糖尿病),旨在重新平衡系統氧化還原穩態的治療方法已取得一定成效。本文提出了一種無創的、持續的治療方法,其可以長期控制氧化還原信號以治療T2D。我們發現靜態磁場和電場(sBE)可以無創地調節系統性穀胱甘肽(GSH)與氧化型穀胱甘肽(GSSG)之間的氧化還原偶聯,從而促進一個更健康的偏向還原態的系統性氧化還原環境。值得注意的是,將該系統應用於T2D小鼠模型時,sBE可在短短3天內迅速改善T2D小鼠的胰島素抵抗和葡萄糖耐量,且未觀察到不良反應。利用SOD2在肝線粒體中清除氧代謝的順磁性副產物,則完全抵消了上述胰島素增敏作用,表明線粒體超氧化物介導了這些治療效果。總之,我們的研究結果揭示了一種顯著的氧化還原調節現象,利用內源性電磁感受性機制對T2D以及其他潛在的氧化還原相關疾病實現無創治療。
感受磁信號的受體
早在2012年,Sarah A. Stanley等人利用包裹有組蛋白標籤抗體的外源金屬微粒與帶有組蛋白標籤的熱敏離子通道TRPV1結合,通過電磁波加熱金屬微粒使熱敏TRPV1打開,開啟下遊鈣調胰島素基因的表達。之後一項體內實驗研究表明磁場能夠刺激機體胰島素分泌增加。而另一項研究則通過將順磁鐵蛋白與通道蛋白(TRPV4)融合,利用順磁鐵蛋白在靜磁場中的磁矩實現機械敏感通道打開。另外,研究人員通過腺病毒侵染實驗,發現在磁場作用下斑馬魚迴旋行為的頻率增加,表明了通過磁場可以控制動物的行為。但在上述研究中,並未提到直接的磁感應器。此後有研究人員重複這篇文章的實驗,結果發現表達順磁鐵蛋白的神經元不能響應磁場,他們推斷原文章中神經元的動作電位是由於神經元自發放電導致的。後來,我國研究人員提出了MagR/Cry磁感應受體模型,並系統地闡述了MagR基因在磁生物學上的功能。但是,有研究者指出在背根神經節細胞和海馬體神經元細胞中分別表達MagR後,這些細胞不會響應磁場的刺激,也沒有鈣離子信號的變化。因此這部分工作受到了其他科研工作者的質疑,而MagR 蛋白的相關功能也有待進一步探究。Exposure to Static Magnetic and Electric Fields Treats Type 2 Diabetes
發表單位:Department of Pediatrics and Division of Medical Genetics and Genomics, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
PI:Val C. Sheffield,一作:Calvin S. Carter
Abstract
Aberrant redox signaling underlies the pathophysiology of many chronic metabolic diseases, including type 2 diabetes (T2D). Methodologies aimed at rebalancing systemic redox homeostasis have had limited success. A noninvasive, sustained approach would enable the long-term control of redox signaling for the treatment of T2D. We report that static magnetic and electric fields (sBE) noninvasively modulate the systemic GSH-to-GSSG redox couple to promote a healthier systemic redox environment that is reducing. Strikingly, when applied to mouse models of T2D, sBE rapidly ameliorates insulin resistance and glucose intolerance in as few as 3 days with no observed adverse effects. Scavenging paramagnetic byproducts of oxygen metabolism with SOD2 in hepatic mitochondria fully abolishes these insulin sensitizing effects, demonstrating that mitochondrial superoxide mediates induction of these therapeutic changes. Our findings introduce are markable redox-modulating phenomenon that exploits endogenous electromagneto-receptive mechanisms for the noninvasive treatment of T2D, and potentially other redox-related diseases.
原文連結:https://www.cell.com/cell-metabolism/fulltext/S1550-4131(20)30490-3
1. 肥胖相關的PPARγS273磷酸化通過生長分化因子3促進胰島素抵抗
小編一句話:TZDs和PPARγ這對CP常年「霸佔熱搜」,你嗑嗎?噻唑烷二酮(TZDs)是PPARγ的配體,可提高胰島素敏感性,但其臨床應用受到嚴重副作用的限制。最近,我們發現了一個TZDs改善胰島素敏感性的機制,該機制不依賴其受體激動劑和促進脂肪生成的作用:即TZD通過逆轉與肥胖相關的PPARγ Ser273位點的磷酸化來改善胰島素敏感性。然而,這種修飾作用還沒有基因水平上的驗證。本研究中,我們使用了PPARγ Ser273位點不能被磷酸化的基因修飾小鼠,結果發現該小鼠可免受胰島素抵抗,且不會出現體重差異和TZD相關的副作用。高胰島素-正常血糖鉗夾實驗也證實了該小鼠的胰島素敏感性得到了改善。RNA-seq結果顯示,這些小鼠中BMP家族成員Gdf3的表達下降。Gdf3的異位表達足以在瘦的、健康的小鼠中誘導胰島素抵抗的發生。體外實驗發現Gdf3可以抑制BMP信號和胰島素信號。總之,這些結果強調了PPARγ S273磷酸化的致糖尿病作用,及Gdf3可能是其致病過程中一個重要的靶點。
PPARγ S273磷酸化的代謝作用
PPARγ是配體依賴的核受體超家族的成員之一,其在脂肪組織中表達最為豐富。在不同的刺激下,PPARγ發生磷酸化的位點不同,產生的生物學效應也不同。之前的研究發現,由Cdk5介導的PPARγ Ser273位點磷酸化是控制全身胰島素敏感性的一個關鍵位點。TZDs作為PPARγ激動劑(full agonist),其臨床使用被心血管和骨質等全身副作用所限制。研究發現TZDs治療糖尿病的機制之一是特異性阻斷PPARγ-Ser273位點的磷酸化。因而前期研究篩選或設計了PPARγ部分激動劑(partial agonist),能夠特異性抑制PPARγ Ser273磷酸化,從而提高肥胖動物的胰島素敏感性,同時沒有TZDs的常規副作用。臨床數據顯示,糖尿病患者PPARγ-S273的磷酸化水平與胰島素敏感性呈顯著負相關。因此,調控PPARγ-S273的磷酸化水平可以作為2型糖尿病治療的重要靶點。本研究利用PPARγ-S273磷酸化缺陷的小鼠模型驗證了該位點對於胰島素敏感性的重要性,同時鑑定出了PPARγ-S273磷酸化後的下遊靶點。[1]Choi JH, et al. Nature. 2010 Jul 22;466(7305):451-6.[2]Banks AS, et al. Nature. 2015 Jan 15;517(7534):391-5.[3]Choi JH, et al. Genes Dev. 2014 Nov 1;28(21):2361-9.Obesity-Linked PPARγS273 Phosphorylation Promotes Insulin Resistance through Growth Differentiation Factor 3
發表單位:Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School
PI: Alexander S. Banks,一作:Jessica A. Hall
Abstract
The thiazolidinediones (TZDs) are ligands of PPARγ that improve insulin sensitivity, but their use is limited by significant side effects. Recently, we demonstrated a mechanism wherein TZDs improve insulin sensitivity distinct from receptor agonism and adipogenesis: reversal of obesity-linked phosphorylation of PPARγ at serine 273. However, the role of this modification hasn’t been tested genetically. Here we demonstrate that mice encoding an allele of PPARγ that cannot be phosphorylated at S273 are protected from insulin resistance, without exhibiting differences in body weight or TZD-associated side effects. Indeed, hyperinsu-linemic-euglycemic clamp experiments confirm insulin sensitivity. RNA-seq in these mice reveals reduced expression of Gdf3, a BMP family member. Ectopic expression of Gdf3 is sufficient to induce insulin resistance in lean, healthy mice. We find Gdf3 inhibits BMP signaling and insulin signaling in vitro. Together, these results highlight the diabetogenic role of PPARγS273 phosphorylation and focus attention on a putative target, Gdf3.
原文連結:https://www.cell.com/cell-metabolism/fulltext/S1550-4131(20)30476-9
2.一種膜結合的二醯基甘油誘導PKCϵ介導的肝胰島素抵抗
小編一句話:「小小」二醯基甘油竟然還有另一幅面孔—誘發肝胰島素抵抗。中文摘要
非酒精性脂肪肝病與肝胰島素抵抗(HIR)密切相關,然而,聯繫這二者的關鍵脂質和分子機制仍存在爭議。本研究開發了一種亞細胞分級分離方法來定量分析內質網(ER)、線粒體、質膜(PM)、脂滴和胞質中的二醯基甘油(DAG)立體異構體和神經醯胺。急性敲減(KD)大鼠肝臟中的二醯基甘油醯基轉移酶2可以誘導HIR的發生。這是由於質膜sn-1,2-DAG(PMsn-1,2-DAG)的積累促進了PKCϵ活化和IRK-T1160(胰島素受體激酶T1160位)的磷酸化,從而導致IRK-Y1162磷酸化水平下降。此外,HIR患者肝臟中PMsn-1,2-DAG含量和IRK-T1160磷酸化水平也較高。在大鼠中,肝臟特異性敲減PKCϵ可降低IRK-T1160磷酸化水平並改善高脂飲食誘導的HIR,而過表達PKCϵ(持續性激活PKCϵ)可促進IRK-T1160的磷酸化進而誘導HIR。這些數據表明PMsn-1,2-DAGs是激活PKCϵ的關鍵脂質庫,且PKCϵ對介導HIR起著必要和充分的作用。DAG與脂代謝,PKCϵ
DAG(二醯甘油)是一種甘油酯,由甘油的兩個羥基被脂肪酸酯化而成,是TAG(甘油三酯)和PL(磷脂)從頭合成過程中的中間產物。除了參與脂質合成外,DAG可作為第二信使參與IP3/DAG-PKC信號通路的轉導。DAG有三種不同的立體異構體:sn-1,2-DAG,sn-2,3-DAG和rac-1,3-DAG。不同立體異構體與其相應結合的蛋白分布在不同的細胞器中,並在細胞信號轉導中發揮著不同的作用。其中,sn-1,2-DAG是唯一能夠激活PKCϵ的立體異構體。PKC是PKCs家族中的一員,屬於新型蛋白激酶C,其被認為是一種與肝臟胰島素信號相關的DAG敏感型激酶。在肝細胞中,PKCϵ被sn-1,2-DAG激活後,誘導胰島素受體激酶T1160位點磷酸化,從而阻斷胰島素信號的傳遞。研究表明,高脂飼料餵養的大鼠在肝臟特異性敲除PKCϵ後可逆轉脂質誘導的胰島素信號轉導缺陷和肝臟胰島素抵抗。總之,DAG作為脂代謝的中間產物,參與了機體重要脂質的合成與分解。其中,sn-1,2-DAG通過特異性激活PKCϵ,調控機體胰島素的信號轉導。
A Membrane-Bound Diacylglycerol Species Induces PKCϵ-Mediated Hepatic Insulin Resistance
發表單位:Department of Internal Medicine, Yale School of Medicine
PI: Gerald I. Shulman,一作:Kun Lyu
Abstract
Nonalcoholic fatty liver disease is strongly associated with hepatic insulin resistance (HIR); however, the key lipid species and molecular mechanisms linking these conditions are widely debated. We developed a sub-cellular fractionation method to quantify diacylglycerol (DAG) stereoisomers and ceramides in the endoplasmic reticulum (ER), mitochondria, plasma membrane (PM), lipid droplets, and cytosol. Acute knockdown (KD)of diacylglycerol acyltransferase-2 in liver induced HIR in rats. This was due to PMsn-1,2-DAG accumulation, which promoted PKCϵ activation and insulin receptor kinase (IRK)-T1160 phosphorylation, resulting in decreased IRK-Y1162 phosphorylation. Liver PMsn-1,2-DAG content and IRK-T1160 phosphorylation were also higher in humans with HIR. In rats, liver-specific PKCϵ KD ameliorated high-fat diet-induced HIR by lowering IRK-T1160 phosphorylation, while liver-specific overexpression of constitutively active PKCϵ-induced HIR by promoting IRK-T1160 phosphorylation. These data identify PMsn-1,2-DAGs as the key pool of lipids that activate PKCϵ and that hepatic PKCϵis both necessary and sufficient in mediating HIR.
原文連結:https://www.cell.com/cell-metabolism/fulltext/S1550-4131(20)30414-9
φ(≧ω≦*)♪
喜歡我們嗎?點擊下方「閱讀原文」關注我們吧~
๑乛㉨乛๑ ↓
更多精彩內容,點擊下方「往期推薦」
長按識別二維碼
關注我們,精彩不斷
了解更多科研知識和進展