spss 非線性回歸專題及常見問題 - CSDN

2021-01-08 CSDN技術社區

各位SPSS學堂粉絲大家好,上次我們簡要給大家梳理了一篇有關非線性關係的文章,現在我們就關於此模型的數據如何用SPSS操作和結果分析進行詳細介紹,前面的描述性統計與相關分析等我們之前的文章中都有提到,這裡我們就不再示範,我們直接給大家示範假設檢驗部分的數據分析。

我們主要是想驗證授權型領導行為與任務績效存在倒U型關係,而自我決定感中介了這一曲線關係,具體內容請大家自行對照論文——《授權型領導行為對員工任務績效的非線性影響機制 》。

主要採用層次回歸的方法進行數據分析,操作起來並不難。首先,對授權型領導行為、自我決定感進行中心化處理(即變量減去它的均值),分別構建二次項。其次,引入控制變量,構建基準模型,分別為Model1 與Model3,操作如下:分析—線性回歸—引入控制變量

再次,以任務績效為結果變量,依次引入授權型領導行為、授權型領導行為平方分別構建Model4與Model5,在這裡我們主要是驗證授權型領導行為對任務績效產生倒U型影響,主要是通過Model5來判斷,如果授權型領導行為平方對任務績效產生顯著負向影響,且相比Model4產生顯著的額外解釋力,且R方更改顯著則我們的假設得到驗證。

得到結果如下,數據是隨意選取的,在這裡只是想告訴大家結果報告時應該關注哪些結果,具體如下。

再次以任務績效為結果變量,依次引入自我決定感、自我決定感的平方構建Model6與Model 7,在這裡我們是為了驗證自我決定感是否對任務績效產生倒 U 型影響,假若員工的自我決定感平方對任務績效產生顯著負向影響,且R方更改顯著則我們的假設得到驗證。

Model8是在Model5基礎上,引入中介變量自我決定感、自我決定感平方構建而來的,若自我決定感、自我決定感平方,對任務績效分別產生顯著負向影響,則能初步驗證了自我決定感的中介作用。進一步的檢驗就是驗證該模型是一種特殊的有調節中介模型,具體可參照Lin, Law和Zhou(2017)文中的做法。

對於這種曲線圖的做法,我們初步了解到可以採用R語言或者Origin軟體進行擬合。感興趣的小夥伴可以進一步了解。

參考文獻:

尹奎, 邢璐, 汪佳. (2018).授權型領導行為對員工任務績效的非線性影響 機制.心理科學, 41(3), 170-176

Lin, B. L., Law, K. S., & Zhou, J. (2017). Why is underemployment related to creativity and OCB? A task-crafting explanation of the curvilinear moderated relations.Academy of Management Journal,60(1),156-177.

相關焦點

  • spss 方法 線性回歸專題及常見問題 - CSDN
    本文收集整理關於spss多元線性回歸結果解讀的相關議題,使用內容導航快速到達。內容導航:Q1:請高手幫忙分析下SPSS的多元線性回歸結果吧~急啊~~~你的回歸方法是直接進入法擬合優度R方等於0.678,表示自變量可以解釋因變量的67.8%變化,說明擬合優度還可以。
  • spss多元線性回歸專題及常見問題 - CSDN
    本文收集整理關於spss多元線性回歸結果解讀的相關議題,使用內容導航快速到達。內容導航:Q1:請高手幫忙分析下SPSS的多元線性回歸結果吧~急啊~~~你的回歸方法是直接進入法擬合優度R方等於0.678,表示自變量可以解釋因變量的67.8%變化,說明擬合優度還可以。
  • spss 非線性回歸 - CSDN
    我們在做問卷分析時,由於因變量多為連續的線性變量,多半會採用線性回歸分析來研究變量之間的關係。此時,一般資料或者人口學變量中,就會含有很多分組或分類的變量,比如性別,學歷等等。 如果因變量在這些人口學變量上存在顯著的差異,那麼做回歸分析時候,就需要將這些存在顯著差異的人口學變量作為控制變量納入線性回歸分析。
  • spss多元線性回歸模型專題及常見問題 - CSDN
    多元線性回歸,主要是研究一個因變量與多個自變量之間的相關關係,跟一元回歸原理差不多,區別在於影響因素(自變量)更多些而已,例如:一元線性回歸方程 為:   今天跟大家一起討論一下,SPSS---多元線性回歸的具體操作過程,下面以教程教程數據為例,分析汽車特徵與汽車銷售量之間的關係。通過分析汽車特徵跟汽車銷售量的關係,建立擬合多元線性回歸模型。數據如下圖所示:
  • 回歸模型eviews專題及常見問題 - CSDN
    來源 | 計量經濟學服務中心綜合整理轉載請聯繫一、Threshold Regression Estimation閾值回歸模型描述了一種簡單的非線性回歸模型。TR規範很受歡迎,因為它們很容易。估計和解釋,並能產生有趣的非線性和豐富的動力學。
  • 多元線性回歸預測spss - CSDN
    回歸一直是個很重要的主題。因為在數據分析的領域裡邊,模型重要的也是主要的作用包括兩個方面,一是發現,一是預測。而很多時候我們就要通過回歸來進行預測。關於回歸的知識點也許不一定比參數檢驗,非參數檢驗多,但是複雜度卻絕對在其上。回歸主要包括線性回歸,非線性回歸以及分類回歸。本文主要討論多元線性回歸(包括一般多元回歸,含有虛擬變量的多元回歸,以及一點廣義差分的知識)。
  • spss線性回歸自變量因變量專題及常見問題 - CSDN
    轉載自公眾號:青年智囊SPSS多元線性回歸在回歸分析中,如果有兩個或兩個以上的自變量,就稱為多元回歸。事實上,一種現象常常是與多個因素相聯繫的,由多個自變量的最優組合共同來預測或估計因變量,比只用一個自變量進行預測或估計更有效,更符合實際,因此多元線性回歸被廣泛運用。今天大家一起來學習吧!
  • f p 線性回歸專題及常見問題 - CSDN
    對於一個樣本\(x_i\),它的輸出值是其特徵的線性組合:\[\begin{equation}f(x_i) = \sum_{m=1}^{p}w_m x_{im}+w_0={w}^T{x_i}\end{equation}\]線性回歸的目標是用預測結果儘可能地擬合目標label,用最常見的Least square作為loss function:\[\begin{equation}
  • f t 線性回歸專題及常見問題 - CSDN
    1、標準化對於多元線性回歸需要對各個自變量進行標準化,排除單位的影響。標準化方法:即將原始數據減去相應變量的均數後再除以該變量的標準差,而標準化得到的回歸方程稱為標準化回歸方程,相應得回歸係數為標準化回歸係數。
  • 回歸分析spss步驟 - CSDN
    我們的教程中曾詳細講述了SPSS線性回歸分析,儘管線性回歸可以滿足絕大多數的數據分析,但是在現實情況中,並不能適用於所有的數據,當因變量和自變量之間的關係我們無法確定是否為線性或者其他非線性類型的模型關係時候,那麼我們就需要用到曲線回歸,來確定因變量和自變量之間到底最適合什麼樣的模型。
  • 非線性回歸
    為了使研究結果更準確,需建立能很好地擬合研究變量關係的模型,即非線性回歸模型。由於非線性回歸模型遠比線性回歸模型複雜,本次只介紹一般思路(一)非線性回歸當不能通過變量變換的方法使曲線直線化或直線進行曲線擬合時,需利用非線性最小二乘估計的原則,一般由統計軟體完成。
  • t值 線性回歸專題及常見問題 - CSDN
    線性回歸 用線性回歸找到最佳擬合直線回歸的目的是預測數值型數據,根據輸入寫出一個目標值的計算公式,這個公式就是回歸方程(regression equation),變量前的係數(比如一元一次方程)稱為回歸係數(regression weights)。
  • t檢驗回歸方程專題及常見問題 - CSDN
    回歸方程的顯著性檢驗  t 檢驗(回歸係數的檢驗)  F 檢驗(回歸方程的檢驗)  相關係數的顯著性檢驗  樣本決定係數  三種檢驗的關係∵ 自由度有可加性∴                    (11)  因為總平方和反映因變量 y 的波動程度或稱不確定性,在建立了 y 對 x 的線性回歸後,總平方和SST就分解成回歸平方和SSR與殘差平方和SSE這兩部分,其中SSR是由回歸方程確定的,也就是由自變量
  • 線性回歸假設檢驗專題及常見問題 - CSDN
    第四步 確定模型形式和參數估計第五步 評估模型效果對於回歸問題,常用的模型評估指標有兩個:均方差(MSE):預測值與真實值的平均差距。L指的是上面定義的損失函數。所以最終的參數估計公式也就變成了:這就與前面機器學習裡面的 線性回歸模型(最小二乘法OLS)的參數估計公式相同。在之前機器學習的討論中,我們知道 只要定義一種不同的損失函數,就有一種新的線性回歸模型。那麼為什麼我們通常使用的就是 最小二乘法(OLS)線性回歸模型呢?
  • spss卡方_spss卡方檢驗 - CSDN
    spss中交叉分析主要用來檢驗兩個變量之間是否存在關係,或者說是否獨立,其零假設為兩個變量之間沒有關係。在實際工作中,經常用交叉表來分析比例是否相等。例如分析不同的性別對不同的報紙的選擇有什麼不同。
  • 的方法 線性回歸方程檢驗專題及常見問題 - CSDN
    回歸方程建立及回歸參數的區間估計,但是它們都是建立在假定因變量和自變量線性相關的基礎上。在總變差中,一部分變差可以用設定的回歸方程解釋,稱之為回歸變差;另一部分變差是回歸方程不能解釋的,稱為剩餘變差,它們之間有下面等式:如果在總變差Y中,回歸變差所佔的比例越大,則說明Y值隨X值的變化越顯著,或者說X解釋Y的能力越強。反之,回歸變差在總變差中所佔比例越小,則說明Y值隨X值的變化越不顯著,或者說X解釋Y的能力越差。
  • 多元線性回歸matlab專題及常見問題 - CSDN
    %多元線性回歸求解clearclcx=[120731808012512581.190133.02731808012512581.190129.63731808012512581.190158.77731808012512581.190145.32731808012512581.190
  • 卡方檢驗相關性專題及常見問題 - CSDN
    那麼有一個問題:協方差數值大小是否代表了相關程度呢?也就是說如果協方差為 100 是否一定比協方差為 10 的正相關性強呢?考察兩個變量的相關關係,首先得看清楚兩個變量都是什麼類型的,統計分析中常見的變量類型有連續型數值變量,無序分類變量、有序分類變量:連續型數值變量:如銷售額、氣溫、工資收入、考試成績;無序分類變量:如性別男和女,血型種類;有序分類變量:如學歷水平小學、初中、高中
  • 值 多元線性回歸模型專題及常見問題 - CSDN
    多元線性回歸模型通常用來研究一個應變量依賴多個自變量的變化關係,如果二者的以來關係可以用線性形式來刻畫,則可以建立多元線性模型來進行分析。1.模型簡介1.1模型的結構多元線性回歸模型通常用來描述變量y和x之間的隨機線性關係,即:
  • 多元線性回歸t檢驗專題及常見問題 - CSDN
    多元線性回歸模型通常用來研究一個應變量依賴多個自變量的變化關係,如果二者的以來關係可以用線性形式來刻畫,則可以建立多元線性模型來進行分析。1.t檢驗t檢驗是對單個變量係數的顯著性檢驗,一般看p值; 如果p值小於0.05表示該自變量對因變量解釋性很強。