Adhesion to fibronectin via α5β1 integrin supports expansion ...

2021-02-13 Blood中文時訊

MYELOID NEOPLASIA| JUNE 18, 2020

Adhesion to fibronectin via α5β1 integrin supports expansion of the megakaryocyte lineage in primary myelofibrosis

Shinobu Matsuura, Cristal Reyna Thompson, Seng Kah Ng, Christina Marie Ward, Aikaterini Karagianni, Carla Mazzeo, Alessandro Malara, Alessandra Balduini, Katya Ravid

Blood (2020) 135 (25): 2286–2291.

https://doi.org/10.1182/blood.2019004230

Key Points

The α5 subunit of α5β1 integrin is upregulated in JAK2V617F+ megakaryocytes in PMF leading to increased adhesion to fibronectin.

Antibody-mediated inhibition of the α5 subunit prevents expansion of megakaryocyte lineage in JAK2V617F+ cells in vitro and in vivo.

Abstract

Excessive accumulation of extracellular matrix (ECM) is a hallmark of bone marrow (BM) milieu in primary myelofibrosis (PMF). Because cells have the ability to adhere to the surrounding ECM through integrin receptors, we examined the hypothesis that an abnormal ECM-integrin receptor axis contributes to BM megakaryocytosis in JAK2V617F+ PMF. Secretion of ECM protein fibronectin (FN) by BM stromal cells from PMF patients correlates with fibrosis and disease severity. Here, we show that Vav1-hJAK2V617F transgenic mice (JAK2V617F+) have high BM FN content associated with megakaryocytosis and fibrosis. Further, megakaryocytes from JAK2V617F+ mice have increased cell surface expression of the α5 subunit of the α5β1 integrin, the major FN receptor in megakaryocytes, and augmented adhesion to FN compared with wild-type controls. Reducing adhesion to FN by an inhibitory antibody to the α5 subunit effectively reduces the percentage of CD41+ JAK2V617F+ megakaryocytes in vitro and in vivo. Corroborating our findings in mice, JAK2V617F+ megakaryocytes from patients showed elevated expression of α5 subunit, and a neutralizing antibody to α5 subunit reduced adhesion to FN and megakaryocyte number derived from CD34+ cells. Our findings reveal a previously unappreciated contribution of FN-α5β1 integrin to megakaryocytosis in JAK2V617F+ PMF.

Subjects:

Brief Reports, Hematopoiesis and Stem Cells, Myeloid Neoplasia

Topics:

adhesions, antibodies, fibronectins, integrins, megakaryocytes, myelofibrosis, idiopathic, chronic, mice

REFERENCES

1.Leiva O, Ng SK, Chitalia S, Balduini A, Matsuura S, Ravid K. The role of the extracellular matrix in primary myelofibrosis. Blood Cancer J. 2017;7(2):e525.

2.Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia [published correction appears in Blood. 2016;128(3):562-563]. Blood. 2016;127(20):2391-2405.

3.Vainchenker W, Kralovics R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood. 2017;129(6):667-679.

4.Zoi K, Cross NC. Genomics of myeloproliferative neoplasms. J Clin Oncol. 2017;35(9):947-954.

5.Tefferi A. Primary myelofibrosis: 2017 update on diagnosis, risk-stratification, and management. Am J Hematol. 2016;91(12):1262-1271.

6.Schneider RK, Ziegler S, Leisten I, et al. Activated fibronectin-secretory phenotype of mesenchymal stromal cells in pre-fibrotic myeloproliferative neoplasms. J Hematol Oncol. 2014;7(1):92.

7.Abbonante V, Gruppi C, Catarsi P, et al. Altered fibronectin expression and deposition by myeloproliferative neoplasm-derived mesenchymal stromal cells. Br J Haematol. 2016;172(1):140-144.

8.Han P, Guo XH, Story CJ. Enhanced expansion and maturation of megakaryocytic progenitors by fibronectin. Cytotherapy. 2002;4(3):277-283.

9.Malara A, Gruppi C, Rebuzzini P, et al. Megakaryocyte-matrix interaction within bone marrow: new roles for fibronectin and factor XIII-A. Blood. 2011;117(8):2476-2483.

10.Schick PK, Wojenski CM, He X, Walker J, Marcinkiewicz C, Niewiarowski S. Integrins involved in the adhesion of megakaryocytes to fibronectin and fibrinogen. Blood. 1998;92(8):2650-2656.

11.Xing S, Wanting TH, Zhao W, et al. Transgenic expression of JAK2V617F causes myeloproliferative disorders in mice. Blood. 2008;111(10):5109-5117.

12.Eliades A, Papadantonakis N, Bhupatiraju A, et al. Control of megakaryocyte expansion and bone marrow fibrosis by lysyl oxidase. J Biol Chem. 2011;286(31):27630-27638.

13.Abbonante V, Chitalia V, Rosti V, et al. Upregulation of lysyl oxidase and adhesion to collagen of human megakaryocytes and platelets in primary myelofibrosis. Blood. 2017;130(6):829-831.

14.Yanai N, Sekine C, Yagita H, Obinata M. Roles for integrin very late activation antigen-4 in stroma-dependent erythropoiesis. Blood. 1994;83(10):2844-2850.

15.Edelmann B, Gupta N, Schnoeder TM, et al. JAK2-V617F promotes venous thrombosis through β1/β2 integrin activation. J Clin Invest. 2018;128(10):4359-4371.

16.Wen QJ, Yang Q, Goldenson B, et al. Targeting megakaryocytic-induced fibrosis in myeloproliferative neoplasms by AURKA inhibition. Nat Med. 2015;21(12):1473-1480.

17.Kinashi T, Springer TA. Adhesion molecules in hematopoietic cells. Blood Cells. 1994;20(1):25-44.

18.Ebbe S, Stohlman F Jr. Megakaryocytopoiesis in the rat. Blood. 1965;26(1):20-35.

© 2020 by The American Society of Hematology

This program is developed by Focus Insight with the permission of American Society of Hematology, Inc. The content are excerpted from the journal Blood. Copyright © 2019 The American Society of Hematology. All rights reserved. 「American Society of Hematology」, 「ASH」 and the ASH Logo are registered trademarks of the American Society of Hematology.

相關焦點

  • Targeting myeloid-cell specific integrin α9β1 inhibits ...
    α9β1 inhibits arterial thrombosis in miceNirav Dhanesha , Manasa K.Integrin α9β1 is highly expressed on neutrophils when compared with monocytes. It undergoes affinity upregulation on neutrophil activation, and stabilizes adhesion to the activated endothelium.
  • 玩轉基金:17 快速讀懂α、β、R平方的用法
    其實,他們是來自於現代投資組合理論的兩個概念,這個理論我們就不多說了,我們知道貝塔(β),阿爾法(α)如何用就可以了。如果一隻基金β=1,那麼代表它和大盤同漲共跌;如果β>1,假設為1.5,當大盤上升10%的時候,基金上漲15%;市場下跌10%的時候,基金下跌15%。因此,β越大,基金就被視為系統風險越高。
  • ...期刊連發三篇Report類型文章和1篇Letter類型文章,指出α4β7...
    α4β7整聯蛋白能夠幫助T細胞尋找到進入腸道淋巴組織的路徑,而且早在2008年,人們就已發現α4β7整聯蛋白能夠作為一種細胞表面分子參與到SIV病毒外膜和CD4+ T細胞的結合。此外,人們還已發現SIV/HIV利用這種整聯蛋白躲避中和抗體的攻擊。
  • ...和1篇Letter類型文章,指出α4β7抗體並不能維持控制SIV/HIV感染
    α4β7整聯蛋白能夠幫助T細胞尋找到進入腸道淋巴組織的路徑,而且早在2008年,人們就已發現α4β7整聯蛋白能夠作為一種細胞表面分子參與到SIV病毒外膜和CD4+ T細胞的結合。此外,人們還已發現SIV/HIV利用這種整聯蛋白躲避中和抗體的攻擊。
  • 整合素4β7活化在先天性免疫和適應性免疫介導的腸道炎症的機制
    原文以 A mutation that blocks integrin α4β7 activation prevents adaptive immune-mediated colitis without increasing susceptibility to innate colitis 為標題發布在
  • α澱粉酶和β澱粉酶之間的異同
    α澱粉酶和β澱粉酶之間的異同 α-澱粉酶: 是一種內切葡糖苷酶,隨機作用於澱粉鏈內部的α-1,4糖苷鍵. 降解直鏈澱粉產物是葡萄糖,麥芽糖,麥芽三糖. 降解支鏈澱粉產物是葡萄糖,麥芽糖,麥芽三糖和α-極限糊精.
  • α、β、γ等射線,放射性的一般現象
    現在人們通過研究,已經確認不穩定核素的原子核會自發的放射出射線,主要有三種成分組成:1、α射線:也稱α粒子,是高速運動的氦核,是一個穩定的原子核,帶2個正電荷,質量數是4。通常,原子序數大於82的,發生α衰變,產生α射線。α射線飛行距離短,穿透力小,但電離能力強。
  • β-1,4-葡聚糖酶促進植物嫁接中的細胞粘附
    β-1,4-葡聚糖酶促進植物嫁接中的細胞粘附 作者:小柯機器人 發布時間:2020/8/7 22:11:56 日本名古屋大學Michitaka Notaguchi等研究人員發現,β-1,4-葡聚糖酶促進植物嫁接中的細胞粘附。
  • 高中物理:α衰變、β衰變規律對照表
    1、α衰變、β衰變規律對照表衰變類型α衰變β衰變衰變方程
  • The EMT modulator SNAI1 contributes to AML pathogenesis via ...
    to AML pathogenesis via its interaction with LSD1Catherine L.), HRP-conjugated α-Β-Actin (Sigma #ab49900), and secondary HRP-conjugated rabbit α-mouse (Calbiochem #401353) and goat α-rabbit (Calbiochem #402335) antibodies.