LLC串聯諧振電路設計要點及公式推導

2020-11-22 電子發燒友

在傳統的開關電源中,通常採用磁性元件實現濾波,能量儲存和傳輸。開關器件的工作頻率越高,磁性元件的尺寸就可以越小,電源裝置的小型化、輕量化和低成本化就越容易實現。但是,開關頻率提高會相應的提升開關器件的開關損耗,因此軟開關技術應運而生。

要實現理想的軟開關,最好的情況是使開關在電壓和電流同時為零時關斷和開通(ZVS,ZCS),這樣損耗才會真正為零。要實現這個目標,必須採用諧振技術。


【LLC眾籌】最全張飛60小時半橋LLC諧振電源教程,活動最後6天!>立即參與眾籌<


二、LLC串聯諧振電路 

根據電路原理,電感電容串聯或並聯可以構成諧振電路,使得在電源為直流電源時,電路中得電流按照正弦規律變化。由於電流或電壓按正弦規律變化,存在過零點,如果此時開關器件開通或關斷,產生的損耗就為零。下邊就分析目前所使用的LLC諧振半橋電路。基本電路如下圖所示:

其中Cr,Lr,Lm構成諧振腔(Resonant tank),即所謂的LLC,Cr起隔直電容的作用,同時平衡變壓器磁通,防止飽和。

2.1 LLC電路特徵

(1)變頻控制

(2)固定佔空比50%

(3)在開關管輪替導通之間存在死區時間(Dead Time),因此Mosfet可以零電壓開通(ZVS),二次側Diode可以零點流關斷,因此二極體恢復損耗很小

(4)高效率,可以達到92%+

(5)較小的輸出漣波,較好的EMI

2.2 方波的傅立葉展開

對於圖2.1的半橋控制電路,Q1,Q2在一個周期內交替導通,即佔空比為50%。所以VA為方波,幅值等於Vin,其傅立葉級數展開為

其基波分量為

其中fsw為開關頻率,Vo.FHA(t)為諧振腔輸入方波電壓的基波分量。

相應地,諧振腔輸出電壓(即理想變壓器輸出)也為方波

其基波分量為

其中Ψ為輸出電壓相對輸入電壓的相移,實際上為零。

2.3 FHA 電路模型

將圖2.1所示電路的非線性電路做等效變換,可以得到下圖:

FHA(First harmonic approximation):一次諧波近似原理。該原理是假設能量的傳輸只與諧振迴路中電壓和電流傅立葉表達式中的基波分量有關,因此,如果忽略開關頻率的影響,則諧振腔被正弦輸入電流Irt激勵,其表達式為:

其中為輸入電流相對輸入電壓的相移。

相應地,諧振腔輸出電流irect

由於Vo.FHA(t)與irect(t)同相位,所以諧振電路的輸出阻抗為

其中Rout為負載阻抗,該阻抗折算到變壓器原邊的反射阻抗Rac為

所以,諧振腔的輸入阻抗Zin(s)為

變壓器增益傳遞函數H(S)為

電壓增益M(fsw)為

2.4 電壓增益M(fn,λ,Q)分析

對電壓增益M(fsw)表達式中的變量進行替換,得到關於fn,λ,Q三個參量的函數,新的表達式為

式中參數定義如下:

諧振頻率

特徵阻抗

品質因數

Lr與Lm電感值比

歸一化頻率

作出λ=0.2時M(fn,λ,Q)曲線簇如下圖:

(橫軸為fn,縱軸為M)

其中紅色曲線為空載時(Q=0)的電壓增益曲線MOL,隨著fn趨向於無窮,MOL逐漸趨向於M∞。

從圖中可以看到,對於不同的Q值曲線,都會經過Load-independent point(fr,unity gain),且該點所有曲線的切線斜率-2λ。很幸運,load-independent point出現在電壓增益特徵曲線的感性區域,這裡諧振腔電流滯後於輸入電壓方波(這個是ZVS的必要條件)。

通過改變輸入諧振迴路的方波電壓頻率可以穩定轉換器的輸出電壓:由於工作區域為電壓增益特性的感性部分,所以,當輸出功率減小或者輸入電壓增加時,通過提高工作頻率來穩定輸出電壓。考慮到這個問題,如果轉換器工作點與load-independent point很接近,那麼輸出電壓的穩定將會與寬負載變化相逆,相應地開關頻率變化範圍也會很小。

明顯地,輸入電壓範圍越寬,則工作頻率範圍也會相應地變的更寬,因此,很難對電路進行優化設計。這也是目前所有的諧振拓撲結構中普遍存在的缺點。

一般來說,大功率場合一般都有一級PFC電路。對於寬電壓輸入(85Vac~264Vac),經過PFC之後都會升壓到400V,且變化範圍不大(10%~15%)。所以對於前端有PFC的LLC電路來講,LLC輸入電壓的波動很小,因此上述問題不是很嚴重。

工作電壓變化範圍是:最小工作電壓由PFC pre-regulator 持續能力決定(hold-up capability)during mains dips;最大工作電壓由OVP線路的門限值決定。因此,當輸入電壓在正常值時,諧振轉換器可以在load-independent point優化設計,而最小輸入電壓during mains dips交給諧振腔自身的提升能力處理。(比如工作點低於諧振點)

另外,還可以得到一個空載時(二次側Diode不導通)的諧振頻率fo

2.4.1  Mmin和fmax的選取

當輸入電壓Vdc最大,輸出負載最小時,電壓最小增益Mmin須大於M∞

此時最大歸一化頻率為

2.4.1  Mmax和fmin的選取

當輸入電壓Vdc最小,輸出負載最大時,電壓最小增益Mmax

此時最小歸一化頻率為

關於λ的分析,λ增加相應的變化為:

(1)M-fn平面上的增益曲線向著諧振頻率fnr收縮,這同時意味著空載諧振頻率fno增加;

(2)空載增益特性漸近線M∞逐漸減小;

(3)每一條增益曲線的最大增益增加。

2.4 歸一化阻抗Zn(fn,λ,Q)分析

作出λ=0.2時Zn(fn,λ,Q)曲線簇如下圖:

(橫軸為fn,縱軸為Zn)

其中,紅色和藍色曲線分別為空載和短路時的歸一化阻抗特性曲線,所有的Zn以兩個歸一化諧振頻率fno和fnr為漸近線,且不同Q值的曲線相交於一點,該點的歸一化頻率fn.cross:

當工作頻率大於交叉頻率fcross時,輸入阻抗隨輸出電流的增大而減小,當工作頻率小於交叉頻率時,輸入阻抗隨輸出電流的增大而增大。輸出阻抗一直減小。

根據fn可以將整個圖分為三個區間

fn

fn>fnr     感性工作區

fno

題外話,通過阻抗特性評估轉換器的效率η

輸入功率

輸出功率

所以效率η

Yin.LOSS為輸入阻抗的導納(admittance),等於輸入阻抗的倒數(reciprocal)

假設Zn的虛部為零,即Zin為零相位(特徵阻抗Zo為真實值,不影響相位),可以從中解出LLC諧振變換器工作於感性和容性區域的臨界頻率fz,做歸一化處理得到:

其中fnz只與固定的λ-Q相關,此時輸入諧振腔阻抗只有實部(從電源只吸收有用功)。

同時,可以得到最大品質因數

最大品質因數Qmax:當小於Qmax時,對於相同的fn-λ時,諧振腔阻抗呈感性,因此,最大的電壓增益Mmax

將Qz(fn,λ)帶入M(fn,λ,Q)中,得到如Mz (fn, λ)的表達式

因此,在fnr和fno之間的部分可以畫出Mz (fn,λ)以確定感性和容性的分界線borderline,如下圖,從圖中還可以看到,對於單一Q值曲線來講,最大的增益點總是落在容性區域

三、ZVS約束條件(Qmax的選擇) 

3.1 概述

假設工作在感性區域只是半橋MOSFET ZVS的必要條件(necessary condition),並不是充分條件(sufficient condition),因為半橋中點的並聯電容(在FHA分析中被忽略)在轉換過程中需要充電(charged)和消耗(depleted)。為了了解ZVS的工作情況,參照下圖

其中存在兩個電容,分別為POWER MOSFET的等效漏源極電容(輸出電容)Coss和諧振腔阻抗雜散(stray)電容Cstray,因此節點N處的總電容Czvs為

轉換過程如下圖

3.2 ZVS充分條件

為了達到ZVS,在兩個MOSFET輪換開通之間存在死區時間TD。由於工作在感性區域,因此輸入電流滯後於輸入電壓,當半周期結束時,諧振腔的電流Irt仍然在流入,這個電流可以消耗儲存在Czvs上的電荷,從而使節點N的電壓降為零,所以在另一個開關開啟時為零電壓開通。

在半周期結束時,諧振電流腔中的電流必須可以保證在TD時間內,將Czvs的電荷消耗完,這就是ZVS的充分條件,臨界電流Izvs為

這個電流等於流過諧振腔的無功電流的峰值(90度異相),這個電流決定電路的無功功率

而有功功率的輸入電流Iact

所以輸入電流Irt

諧振腔電流滯後電壓的相位Φ(工作點的輸入阻抗相位)

因此我們可以得到整個工作區間內,半橋POWER MOSFET ZVS的充分條件(sufficient condition)的相位判定

3.3 通過選取Qmax來保證ZVS的實現

滿載條件下的Qzvs1

求tanΦ對於解出品質因數(滿載,最小輸入電壓,最大增益,最小工作頻率)並不方便,因此我們計算Qmax(最大輸出功率,最小輸入電壓),此時輸入阻抗為零相位(由上邊關於Qmax的描述可以看到,Qmax是在Zn虛部為零的條件下得到的,即相位Φ等於0,而零相位則無法滿足ZVS的充分條件,也就是說半周期結束時的Irt不會大於臨界值Izvs),所以選取(5%-10%)的差度,保證相位Φ不為零:

從上式得到的結果要驗證是否滿足tan 的條件,不滿足則需要重新設計。

空載條件下的Qzvs2

當然,ZVS的充分條件需要滿足空載且最大輸入電壓時的情況,這樣,滿載時ZVS的最大品質因數增加了約束條件Qzvs2。空載時,Q=0,所以

由ZVS充分條件知

將上式簡化得到空載且最大輸入電壓時的品質因數

因此,為了確保在整個工作區間,諧振腔可以ZVS,必須滿足最大品質因數Qmax小於min(Qzvs1,Qzvs2)

四、過載和短路條件時的工作情況 

參考上圖中的電壓增益特性,假設諧振腔被設計以最大輸出功率Pout.max工作於感性區域,相應地,Q=Qmax,並假定輸出電壓相對輸入電壓的增益大於1,如圖中M=Mx

當輸出功率逐漸由零開始向最大值增加,相應的對於不同負載的增益也會逐步地從紅色曲線(Q=0)進入到黑色曲線(Q=Qmax)。控制迴路會保持M始終等於Mx不變,因此靜態工作點(quiescent point)會沿著M=Mx的水平線移動,相應地,水平線M=Mx和Q值曲線的交點的橫坐標就是不同負載條件下的工作頻率。

如果負載增加到超過最大規定值Q=Qmax,最後轉換器的工作點一定進入容性區域,此時將會出現MOSFET硬開關,如果沒有矯正措施則可能會導致設備故障。

事實上,如果Q相對Qmax足夠大,與M=Mx的交叉點將會出現在分界線Mz的左半平面,即容性區域;如果Q值曲線的正切線超過M=Mx,工作點將不會沿M=Mx移動。這意味者轉換器將不能保證輸出電壓的穩定,儘管工作頻率會降低(反饋反轉feedback  reversal),但是輸出電壓仍會下降。

限制最小工作頻率(M=Mx與Q=Qmax的交點橫坐標)並不能阻止轉換器進入容性工作區域。事實上,當工作頻率到達最小值時,如果負載繼續增加,則會導致工作點沿著垂直線分f=fmin移動,最後穿過分界線。

限制最小工作頻率只有在最小工作頻率歸一化後大於1才有效果。所以,考慮到輸出端過載和短路的情況,轉換器的工組哦頻率必須大於諧振頻率fr,以降低功率吞吐量(power throughout)。

值得注意的是,如果在一段限制時間內,轉換器規定傳輸峰值輸出功率(輸出電壓穩定必須保持)遠大於最大連續輸出功率,諧振腔必須以峰值輸出功率設計,確保其不會進入容性工作區間。當然,熱設計則可以只考慮最大連續輸出功率即可。

無論如何,不論轉換器被如何規定,短路或者一般的過載情況(超過最大諧振腔規定)都需要附加手段處理,比如限電流電路。

五、磁集成

LLC諧振半橋非常適合磁集成,比如說,將電感和變壓器集中到單一磁性設備。這可以很容易從變壓器的物理模型看出,顯然可以看到與LLC電路中的電感部分類似的拓撲結構。然而,理想變壓器在二次側存在漏電感,而在前邊的討論中都被忽略了。為了將二次側漏感的效果考慮進FHA分析中,我們學要一個特殊的變壓器模型和一個簡單化的假設。

眾所周知,由於模型中理想變壓器圈比的選擇很多,因此對於一個給定的變壓器,存在無窮多種電氣等效模型。對一個合適的「等效」圈比n(顯然不同於物理上的圈比nt=N1:N2),所有與漏磁通相關的元件都可以等效到一次側。

這種等效模型稱作APR(All-Primary-Referred),即所有參數都等效於一次側,該模型滿足FHA分析。通過選擇n可以得到APR模型:

k :變壓器耦合係數coupling coefficient

L1:一次側繞組電感值

L2:單邊二次繞組電感值

注意:

(1)Lr仍舊保持了物理模型中的意義:短路二次側繞組時測量得到的一次側電感值

(2)一次側電感L1不可以改變

兩種模型(physical model and APR model)不同的地方只是在分割方式上,因此L1與Lr之間的不同點就是Lm。

最後,倘若這些參數通過等效APR模型闡述得到,以上所作的分析可以直接應用在現實世界中的變壓器。反之亦然(vice versa),基於FHA分析得到的設計流程將提供APR模型的參數;因此,必須增加步驟決定物理模型中的那些參數。

尤其在計算圈比nt(physical model)時,由於Lr與Lm與現實世界中存在聯繫 Lr+Lm=LL1+Lμ=L1

在物理模型中,問題無法在數學上得到解決:因為含有5個未知量LL1,Lμ,nt,LL2a,LL2b ;而APR模型中只有3個參數:Lr,Lm,n.

克服了該問題的假設是建立在磁路對稱(magnetic circuit symmetry):假設一次側和二次側繞組的漏磁通剛好相等。由此假設可以得到:

六、設計步驟 

3.1 設計規格

輸入電壓範圍:Vdc.Min-Vdc.max

正常輸入電壓:Vdc.nom

輸出電壓:Vout

諧振頻率:fr

最大工作頻率:fmax

啟機頻率:fstart

3.2 附加信息

節點 N 的並聯電容:Czvs

死區時間:TD

3.3 一般設計準則

準則1:轉換器設計工作在正常輸入電壓(nominal input voltage)

準則2:轉換器必須能夠自動調節,當輸入電壓最大且零負載

準則3:轉換器必須在一直工作於ZVS區域

3.4 10個設計步驟

1)由準則1知,設正常輸入電壓下,諧振頻率點的增益等於1,計算變壓器(APR)圈比:

2)分別取輸入電壓範圍的極值,計算最大與最小增益

3)按照定義計算最大歸一化工作頻率

4)計算反射到變壓器一次側的等效負載阻抗

5)計算最大輸入電壓,最大工作頻率,零負載條件下,電感比值λ

6)計算最小輸入電壓,滿載時,工作於ZVS區域的最大Q值(選擇90%~95%)

7)計算最大輸入電壓,空載時,工作於ZVS區域的最大Q值

8)選擇整個工作範圍內(空載~滿載)可允許最大的Q值,即Qzvs

9)計算最小輸入電壓,滿載時,最小工作頻率

10)計算諧振腔特徵阻抗和所有的元件值(Lr,Lm,Cr)

相關焦點

  • MOSFET寄生電容對LLC串聯諧振電路ZVS的影響
    要保證LLC原邊MOSFET的ZVS,需要滿足以下三個基本條件:1)上下開關管50%佔空比,1800對稱的驅動電壓波形;2)感性諧振腔並有足夠的感性電流;3)要有足夠的死區時間維持ZVS。圖a)是典型的LLC串聯諧振電路。圖b)是感性負載下MOSFET的工作波形。由於感性負載下,電流相位上會超前電壓,因此保證了MOSFET運行的ZVS。
  • 淺析MOSFET電容在LLC串聯諧振電路中的應用
    打開APP 淺析MOSFET電容在LLC串聯諧振電路中的應用 發表於 2018-12-03 16:59:01 要保證LLC原邊MOSFET的ZVS,需要滿足以下三個基本條件: 1)上下開關管50%佔空比,1800對稱的驅動電壓波形; 2)感性諧振腔並有足夠的感性電流; 3)要有足夠的死區時間維持ZVS。 圖a)是典型的LLC串聯諧振電路。圖b)是感性負載下MOSFET的工作波形。
  • RLC 串聯諧振電路課程的設計研究
    重點研究了 RLC 串聯諧振電路特性,並針對重要參數設計測試內容與步驟。進一步闡述了串聯諧振電路產生的原因,以及發生諧振時的重要特點與電路埠的變化特點。關鍵詞:諧振與共振;串聯諧振;品質因數。這些都是利用諧振電路的特點來為生活提供服務,解決問題。在串聯諧振時,電路的總阻抗最小,電流將達到最大值,這樣很可能導致電容被擊穿或者電流過大而燒壞,不必要的諧振會導致繼電保護和自動裝置的誤動作,並會使電氣測量儀表計量不準確等。有時要避免電路發生諧振現象。3  設計 RLC 串聯諧振  3.1 設計研究目的(1)認識諧振現象,知道串聯諧振電路特點。
  • 利用LLC諧振電路隔離的光伏併網逆變器設計
    本文提出了一種利用LLC諧振電路進行隔離的高頻光伏併網逆變器設計方案,將隔離型和非隔離型光伏併網逆變器的優點結合到一起,既減輕了重量、縮小了體積、降低了成本
  • RLC串聯諧振電路的實驗研究
    摘要:從RLC串聯諧振電路的方程分析出發,推導了電路在諧振狀態下的諧振頻率、通頻帶、品質因數和輸入阻抗,並且基於Multisim 10仿真軟體創建RLC串聯諧振電路,利用其虛擬儀表和仿真分析,分別用測量及仿真分析的方法驗證它的理論根據。
  • LLC諧振變換器原理與設計
    雖然今天LLC已經被廣泛的使用,但工作中發現很多工程師對LLC的原理和設計不是很了解。所以跟大家一起討論下LLC這個拓撲的原理和設計。直到經歷了移相全橋,雙管正激,有源鉗位正激,不對稱半橋的不斷變更,大量的控制ic橫空出世,到現在llc的廣泛產品應用已經十年之久。
  • 諧振電路中的串聯諧振現象
    串聯諧振赫茲電力為您導讀:諧振電路中的串聯諧振現象,考慮一個串聯諧振裝置電路,該串聯電路由一個歐姆電阻,一個線圈和一個與交流電壓源相連的電容器組成(LCR電路)。理論交流正弦電流在力的作用下在該電路中流動,其中W 是諧振的循環頻率。
  • 測量串聯諧振電路的Q因子
    串聯諧振赫茲電力為您導讀:可以使用示波器根據電容器兩端的最大電壓確定串聯諧振裝置的諧振頻率。示波器的第一通道由信號發生器提供電壓,第二通道由電路電容器提供電壓。因為 當電流從發電機中流過時,在諧振時與發電機電壓同相重合,然後電容器上電壓的正弦波就比發電機電壓同相滯後90度。
  • 半橋 LLC 基波分析和參數計算過程推導
    本文是 21Dianyuan 社區原創技術文章,作者 LLC 諧振,感謝作者的辛苦付出。直流 LLC 諧振電源,其實也相當於 buck-boost 電源。要想弄明白和推導理論公式,首先溫習一下傅立葉級數和 RLC 串聯諧振知識。傅立葉級數怎麼推導的呢?詳細的推導過程學習課件我已上傳至論壇,大家可以去論壇自行下載學習。
  • 串聯諧振品質因素
    華意電力是一家專業研發生產串聯諧振的廠家,本公司生產的串聯諧振設備在行業內都廣受好評,以打造最具權威的「串聯諧振「高壓設備供應商而努力。串聯諧振品質因數中的品質因數是電學和磁學的量。表示一個儲能器件(如電感線圈、電容等)、諧振電路中所儲能量同每周期損耗能量之比的一種質量指標;串聯諧振迴路中電抗元件的Q值等於它的電抗與其等效串聯電阻的比值;元件的Q值愈大,用該元件組成的電路或網絡的選擇性愈佳。 串聯諧振品質因數計算對於無輻射系統,如Z=R+jX,則Q =|X|/R。SI單位:1(一)。
  • RLC串聯諧振頻率及其計算公式
    串聯諧振是指所研究的串聯電路部分的電壓和電流達到同相位,即電路中電感的感抗和電容的容抗在數值上時相等的,從而使所研究電路呈現純電阻特性,在給定端電壓的情況下,所研究的電路中將出現最大電流,電路中消耗的有功功率也最大.1.
  • RLC串聯諧振電路的研究
    本實驗的目的是利用串聯電路諧振時的特徵參數,找出RLC串聯電路的諧振頻率,調試電路之前應按所學理論大致估算諧振頻率。
  • 三相交錯式LLC諧振轉換器設計
    LLC串聯諧振轉換器(SRC)自問世以來由於其特殊的性能表現,使其成為非常普遍的拓,特別是其效率和功率密度遠遠優於其它的DC-DC轉換器
  • 串聯諧振電路的特點
    串聯諧振特點:電路呈純電阻性,端電壓和總電流同相,此時阻抗最小,電流最大,在電感和電容上可能產生比電源電壓大很多倍的高電壓,因此串聯諧振也稱電壓諧振
  • rlc串聯電路諧振特性圖分享
    打開APP rlc串聯電路諧振特性圖分享 發表於 2018-02-12 09:35:25 電路元件都被視為線性元件的時候,一個RLC電路可以被視作電子諧波振蕩器。 rlc串聯電路的特點與諧振現象 如下圖所示是由電阻、電感和電容相串聯所組成的RLC串聯電路,在此電路中,電容和電感是儲能元件,其中能量的轉換是可逆的,而電阻是耗能元件,其中電能單向地轉為熱。
  • 【連載】深入淺出電源技術之串聯諧振電路(一)
    如果將幅值固定但頻率不同的電源電壓施加到電路上,電路的特性將會發生什麼。由於此變化的頻率,電路的「頻率響應」行為也將作用於兩個電抗組件。在串聯RLC電路中,當電感器的感抗值等於電容器的容抗值時,出現一個頻率點。換言之,X L  = X c。在發生這種情況的點被稱為諧振頻率點,(  ƒ - [R  電路),並且,因為我們正在分析串聯RLC電路這個諧振頻率產生串聯諧振。
  • LLC串聯諧振DC-DC變換器小信號模型穩定性分析
    在工業和光伏變電行業中,工程師在進行電路系統設計時通常會選擇使用LLC串聯諧振型的DC-DC變換器,以此來提升系統穩定性。
  • 串聯諧振與並聯諧振的區別_串聯諧振與並聯諧振產生諧振的條件
    在電阻、電感和電容的串聯電路中,出現電路的端電壓和電路總電流同相位的現象,叫做串聯諧振。串聯諧振的特點是:電路呈純電阻性,端電壓和總電流同相,此時阻抗最小,電流最大,在電感和電容上可能產生比電源電壓大很多倍的高電壓,因此串聯諧振也稱電壓諧振。 在電力工程上,由於串聯諧振會出現過電壓、大電流,以致損壞電氣設備,所以要避免串聯諧振。 在電感線圈與電容器並聯的電路中,出現並聯電路的端電壓與電路總電流同相位的現象,叫做並聯諧振。
  • 諧振之串聯諧振和並聯諧振
    一、串聯諧振1.串聯諧振的頻率根據感抗與容抗的計算公式和串聯諧振時XL=XC,可得諧振的角頻率ω0(或頻率f0)為:電源或信號的頻率與電路的固有頻率相等,這是發生串聯諧振的條件。 2.串聯諧振時電路的阻抗最小RLC串聯電路的阻抗Z=R2+(XL-XC)2,當電路符合XL=XC的諧振條件而發生串聯諧振時,電路的阻抗Z=R,此時電路的阻抗最小。
  • RLC串聯諧振電路解析,RLC串聯諧振仿真
    當XL》XC時,X》0,R》0,電路呈感性   當XL《XC時,X《0,R》0,電路呈容性   當XL=XC時,X=0,R》0,電路呈電阻性 稱為串聯諧振狀態   Z=[(XL-XC)^2+R^2]^(1/2) U=|z|*I   RLC串聯諧振原理說明: