2013年7月5日電 /生物谷BIOON/ -- 最新一期PLoS ONE(7月4日)報導了一種製造硫代修飾寡核苷酸分子的新方法,用於生產成分高純度的寡核苷酸類基因藥物。這項技術由中國海洋大學生命科學學院的研究人員完成,該成果將有助於推動寡核苷酸藥物的發展。
目前,寡核苷酸主要採用化學方法合成,但化學合成寡核苷酸涉及多步驟的反應,容易出現錯誤,產物純度較低,且純化十分困難。大規模合成寡核苷酸的成本十分高昂,大大限制了寡核苷酸藥物的研究和應用。文章的通訊作者,中國海洋大學的汪小龍副教授解釋道:「我們首創了一種新的基於熱循環的寡核苷酸擴增方法,稱為「聚合酶-內切酶擴增反應」(Polymerase-endonuclease amplification reaction, PEAR),該方法採用酶催化法使寡核苷酸分子數目指數增加,實現寡核苷酸的自我複製,大大提高寡核苷酸產品的純度。」
該論文的另一作者陳剛博士說:「這種新的寡核苷酸生產方法具有很多優點,能解決目前寡核苷酸製造中的諸多問題。PEAR產物無需經過任何處理,無需加入新的引物和模板,直接作為『種子』進行二次擴增,使寡核苷酸等小分子核酸能夠像病毒一樣自我複製。相對化學法該技術不需要昂貴的設備,大大降低了生產成本,而且很容易將工藝放大,能夠用於大規模生產修飾寡核苷酸。」
PEAR反應獨特的「滑動-切割反應機理」,由耐熱DNA聚合酶和耐熱限制性內切酶協同作用,使得只有目標序列寡核苷酸能夠指數擴增,而非目標序列由於缺少重複序列和酶切位點,無法被擴增。目前該研究小組已成功用PEAR方法製備出了帶有硫代、氟代和甲基修飾基團的寡核苷酸,經變性高效液相色譜和電噴霧質譜檢測(LC/MS),證實其分子結構和序列無誤。與化學合成法相比,PEAR產物幾乎沒有錯誤序列,因此PEAR產物純度極高,產物中目標寡核苷酸序列含量所佔比例超過99.9%。
該研究由國家自然科學基金項目「聚合酶-內切酶擴增反應製備反義寡核苷酸(81072567)」資助。該課題評審和立項專家意見認為:「PEAR技術在大規模製備寡核苷酸藥物中具有良好的應用前景」。目前該方法已經申請了國際發明專利(PCT/CN2009/000362)。(生物谷Bioon.com)
相關背景:寡核苷酸是生命科學等領域研究的一種基本工具,近期生物醫藥研究和發展中取得了一些重大突破,寡核苷酸藥物市場前景十分看好。反義寡核苷酸已經被開發為基因靶向治療的藥物,用於抗病毒、抗腫瘤和治療遺傳性疾病。CpG寡核苷酸則能夠激活非特異性免疫反應,可用作免疫增強劑和疫苗佐劑。2013年1月,美國ISIS公司和Genzyme公司合作的一大成果反義寡核苷酸藥物KYNAMRO(Mipomersen)通過美國FDA認證,目前已經上市。Mipomersen是化學合成的輔助降脂藥物,通過反義寡核苷酸抑制載脂蛋白 B-100的mRNA,用於治療家族性高膽固醇血症 (HoFH)。
現代分子生物學實驗室中,普遍用寡核苷酸作為引物,採用聚合酶鏈式反應(PCR)擴增核酸分子,但PCR不能直接擴增寡核苷酸。因為它們往往只有18-30個核苷酸的長度,無法設計一對特異性PCR引物。用PCR來擴增寡核苷酸,必須首先設法(如加接頭或使用通用引物)將目標延長。另外,PCR只是將寡核苷酸引物延伸,PCR擴增產物DNA的分子數不可避免地受輸入寡核苷酸引物濃度的限制,二次擴增必須加入新的寡核苷酸引物,因此PCR技術不適合於大規模製備寡核苷酸。
目前國際上已經出現了一些新型核酸擴增方法,但能夠用於擴增寡核苷酸的方法極少。2003年PNAS雜誌報導了指數擴增反應(EXPAR)。2013年6月2日Nature Methods雜誌報導利用滾環複製或者細菌體內複製DNA序列的過程,能以較低的成本、按特定比例製造大量的DNA分子。但這些方法目前尚不能產生帶有硫代修飾的寡核苷酸。由於天然的寡核苷酸在體內很容易降解,而且具有一些毒副作用,因此作為藥物的寡核苷酸必須在磷酸二酯鍵中帶有硫代修飾基團,增強寡核苷酸在體內的穩定性。
生物谷推薦英文摘要1:
PLoS One doi:10.1371/journal.pone.0067558.
Preparation of 5′-O-(1-Thiotriphosphate)-Modified Oligonucleotides Using Polymerase-Endonuclease Amplification Reaction (PEAR)
Antisense oligonucleotides (ASODNs) have been widely used as an important tool for regulating gene expression, and developed into therapeutics. Natural ODNs are susceptible to nuclease degradation, nucleic acid analogues, however, have less side effects, stronger stability and more potent activities. Large-scale de novo synthesis of a certain oligonucleotide has been very difficult and costly. In a previous preliminary study, we developed the polymerase-endonuclease amplification reaction (PEAR) for amplification and large-scale preparation of natural antisense ODNs. Here we extended the method in preparation of a widely used modified oligonucleotide with 5′-O-(1-Thiotriphosphate) modifications. Using electrospray ionization liquid chromatography mass spectrometry (ESI/LC/MS) detection, the purity of the PEAR product was measured as high as 100.0%. Using PEAR a large amount of a specific oligonucleotide can be produced starting from a small amount of synthetic seeds. It is suggested that PEAR can be a useful tool for large-scale production of modified oligonucleotides.
生物谷推薦英文摘要2:
PLoS ONE doi:10.1371/journal.pone.0008430.
Polymerase- Endonuclease Amplification Reaction (PEAR) for Large-Scale Enzymatic Production of Antisense Oligonucleotides.
Antisense oligonucleotides targeting microRNAs or their mRNA targets prove to be powerful tools for molecular biology research and may eventually emerge as new therapeutic agents. Synthetic oligonucleotides are often contaminated with highly homologous failure sequences. Synthesis of a certain oligonucleotide is difficult to scale up because it requires expensive equipment, hazardous chemicals and a tedious purification process. Here we report a novel thermocyclic reaction, polymerase-endonuclease amplification reaction (PEAR), for the amplification of oligonucleotides. A target oligonucleotide and a tandem repeated antisense probe are subjected to repeated cycles of denaturing, annealing, elongation and cleaving, in which thermostable DNA polymerase elongation and strand slipping generate duplex tandem repeats, and thermostable endonuclease (PspGI) cleavage releases monomeric duplex oligonucleotides. Each round of PEAR achieves over 100-fold amplification. The product can be used in one more round of PEAR directly, and the process can be further repeated. In addition to avoiding dangerous materials and improved product purity, this reaction is easy to scale up and amenable to full automation. PEAR has the potential to be a useful tool for large-scale production of antisense oligonucleotide drugs.