電晶體全稱雙極型三極體(Bipolar junction transistor,BJT)又稱晶體三極體,簡稱三極體,是一種固體半導體器件,可用於檢波、整流、放大、開關、穩壓、信號調製等。電晶體作為一種可變開關。基於輸入的電壓,控制流出的電流,因此電晶體可用作電流的開關。和一般機械開關(如Relay、switch)不同的是:電晶體是利用電訊號來控制,而且開關速度非常快,在實驗室中的切換速度可達100吉赫茲以上。
電晶體按其結構分為NPN型和PNP型兩類。電晶體結構與符號如圖所示。它們都有三個區:集電區、基區、發射區;從這三個區引出的電極分別稱為集電極c(Collector)、基極b(Base)和發射極e(Emitter)。兩個PN結:發射區與基區之間的PN結稱為發射結Je,基區與集電區之間的PN結稱為集電結Je。
兩種管子的電路符號的發射極箭頭方向不同,箭頭方向表示發射結正偏時發射極電流的實際方向。
應當指出,電晶體絕不是兩個PN結的簡單連接。它採用了以下製造工藝:基區很薄且摻雜濃度低,發射區摻雜濃度高,集電結面積比發射結的面積大等。這些都是為了保證電晶體具有較好的電流放大作用。
由於電晶體在結構上有這些特點,所以不能用兩個二極體背向連接來說明電晶體的作用,在使用時發射極和集電極一般不能互換。
電晶體的主要參數有電流放大係數、耗散功率、頻率特性、集電極最大電流、最大反向電壓、反向電流等。
電流放大係數
電流放大係數也稱電流放大倍數,用來表示電晶體放大能力。根據電晶體工作狀態的不同,電流放大係數又分為直流電流放大係數和交流電流放大係數。
1、直流電流放大係數 直流電流放大係數也稱靜態電流放大係數或直流放大倍數,是指在靜態無變化信號輸入時,電晶體集電極電流IC與基極電流IB的比值,一般用hFE或β表示。
2、交流電流放大係數 交流電流放大係數也稱動態電流放大係數或交流放大倍數,是指在交流狀態下,電晶體集電極電流變化量△IC與基極電流變化量△IB的比值,一般用hfe或β表示。
hFE或β既有區別又關係密切,兩個參數值在低頻時較接近,在高頻時有一些差異。
耗散功率
耗散功率也稱集電極最大允許耗散功率PCM,是指電晶體參數變化不超過規定允許值時的最大集電極耗散功率。
耗散功率與電晶體的最高允許結溫和集電極最大電流有密切關係。電晶體在使用時,其實際功耗不允許超過PCM值,否則會造成電晶體因過載而損壞。
通常將耗散功率PCM小於1W的電晶體稱為小功率電晶體,PCM等於或大於1W、小於5W的電晶體被稱為中功率電晶體,將PCM等於或大於5W的電晶體稱為大功率電晶體。
頻率特性
電晶體的電流放大係數與工作頻率有關。若電晶體超過了其工作頻率範圍,則會出現放大能力減弱甚至失去放大作用。
電晶體的頻率特性參數主要包括特徵頻率fT和最高振蕩頻率fM等。
1、特徵頻率fT 電晶體的工作頻率超過截止頻率fβ或fα時,其電流放大係數β值將隨著頻率的升高而下降。特徵頻率是指β值降為1時電晶體的工作頻率。
通常將特徵頻率fT小於或等於3MHZ的電晶體稱為低頻管,將fT大於或等於30MHZ的電晶體稱為高頻管,將fT大於3MHZ、小於30MHZ的電晶體稱為中頻管。
2、最高振蕩頻率fM 最高振蕩頻率是指電晶體的功率增益降為1時所對應的頻率。
通常,高頻電晶體的最高振蕩頻率低於共基極截止頻率fα,而特徵頻率fT則高於共基極截止頻率fα、低於共集電極截止頻率fβ。
集電極最大電流ICM
集電極最大電流是指電晶體集電極所允許通過的最大電流。當電晶體的集電極電流IC超過ICM時,電晶體的β值等參數將發生明顯變化,影響其正常工作,甚至還會損壞。
最大反向電壓
最大反向電壓是指電晶體在工作時所允許施加的最高工作電壓。它包括集電極—發射極反向擊穿電壓、集電極—基極反向擊穿電壓和發射極—基極反向擊穿電壓。
1、集電極——集電極反向擊穿電壓 該電壓是指當電晶體基極開路時,其集電極與發射極之間的最大允許反向電壓,一般用VCEO或BVCEO表示。
2、基極—— 基極反向擊穿電壓 該電壓是指當電晶體發射極開路時,其集電極與基極之間的最大允許反向電壓,用VCBO或BVCBO表示。
3、發射極——發射極反向擊穿電壓 該電壓是指當電晶體的集電極開路時,其發射極與基極與之間的最大允許反向電壓,用VEBO或BVEBO表示。
反向電流
電晶體的反向電流包括其集電極—基極之間的反向電流ICBO和集電極—發射極之間的反向擊穿電流ICEO。
1.集電極——基極之間的反向電流ICBO ICBO也稱集電結反向漏電電流,是指當電晶體的發射極開路時,集電極與基極之間的反向電流。ICBO對溫度較敏感,該值越小,說明電晶體的溫度特性越好。
2.集電極——發射極之間的反向擊穿電流ICEO ICEO是指當電晶體的基極開路時,其集電極與發射極之間的反向漏電電流,也稱穿透電流。此電流值越小,說明電晶體的性能越好。
控制大功率現在的功率電晶體能控制數百千瓦的功率,使用功率電晶體作為開關有很多優點,主要是;
(1)容易關斷,所需要的輔助元器件少;
(2)開關迅速,能在很高的頻率下工作;
(3)可得到的器件耐壓範圍從100V到700V,應有盡有。
幾年前,電晶體的開關能力還小於10kW。目前,它已能控制高達數百千瓦的功率。這主要歸功於物理學家、技術人員和電路設計人員的共同努力,改進了功率電晶體的性能。如:
(1)開關電晶體有效晶片面積的增加;
(2)技術上的簡化;
(3)電晶體的複合——達林頓;
(4)用於大功率開關的基極驅動技術的進步。
直接工作在整流380V市電上的電晶體功率開關
電晶體複合(達林頓)和並聯都是有效地增加電晶體開關能力的方法。在這樣的大功率電路中,存在的主要問題是布線。很高的開關速度能在很短的連接線上產生相當高的幹擾電壓。
簡單和優化的基極驅動造就的高性能
今日的基極驅動電路不僅驅動功率電晶體,還保護功率電晶體,稱之為「非集中保護」 (和集中保護對照)。集成驅動電路的功能包括:
(1)開通和關斷功率開關;
(2)監控輔助電源電壓;
(3)限制最大和最小脈衝寬度;
(4)熱保護;
(5)監控開關的飽和壓降。
打開APP閱讀更多精彩內容聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容圖片侵權或者其他問題,請聯繫本站作侵刪。 侵權投訴