電子病歷在再入院風險預測模型開發與驗證中的應用
作者:
小柯機器人發布時間:2020/4/14 13:36:49
美國密西根大學醫學院Elham Mahmoudi研究組,對電子病歷在再入院風險預測模型開發與驗證中的應用進行了系統回顧。2020年4月8日,《英國醫學雜誌》發表了這一成果。
為了對電子病歷(EMR)數據預測30天再入院率的模型進行集中評估,研究組對Ovid Medline、Ovid Embase等大型資料庫中2015年1月至2019年1月的相關文獻進行了系統審查,檢索使用EMR數據預測模型評估28天或30天再入院率的研究。
共有41項研究符合納入標準。有17種模型預測了所有患者的再入院風險,有24種針對特定人群患者進行預測,其中13種針對心臟病患者。除了來自英國和以色列的兩項研究外,其他研究均來自美國。每個模型的總樣本規模在349至1195640之間。
25個模型使用了拆分樣本驗證技術。41個研究中有17個報告的C統計值為0.75或更高。15個模型使用了校準技術來進一步完善模型。使用EMR數據讓最終的預測模型能夠使用各種臨床指標,例如實驗室結果和生命體徵;但很少使用社會經濟特徵或功能狀態。
使用自然語言處理,三個模型能夠提取相關的社會心理特徵,從而大大改善它們的預測。有26項研究使用了Logistic或Cox回歸模型,其餘研究則使用了機器學習方法。使用回歸方法開發的模型平均C統計量為0.71,機器學習開發為0.74,兩者之間無統計學差異。
總之,使用EMR數據的預測模型比使用管理數據的預測模型具有更好的預測性能,但改進並不大。大多數研究都缺乏社會經濟特徵,未能校準模型,忽略嚴格的診斷測試,且未討論臨床影響。
附:英文原文
Title: Use of electronic medical records in development and validation of risk prediction models of hospital readmission: systematic review
Author: Elham Mahmoudi, Neil Kamdar, Noa Kim, Gabriella Gonzales, Karandeep Singh, Akbar K Waljee
Issue&Volume: 2020/04/08
Abstract: Objective To provide focused evaluation of predictive modeling of electronic medical record (EMR) data to predict 30 day hospital readmission.
Design Systematic review.
Data source Ovid Medline, Ovid Embase, CINAHL, Web of Science, and Scopus from January 2015 to January 2019.
Eligibility criteria for selecting studies All studies of predictive models for 28 day or 30 day hospital readmission that used EMR data.
Outcome measures Characteristics of included studies, methods of prediction, predictive features, and performance of predictive models.
Results Of 4442 citations reviewed, 41 studies met the inclusion criteria. Seventeen models predicted risk of readmission for all patients and 24 developed predictions for patient specific populations, with 13 of those being developed for patients with heart conditions. Except for two studies from the UK and Israel, all were from the US. The total sample size for each model ranged between 349 and 1195640. Twenty five models used a split sample validation technique. Seventeen of 41 studies reported C statistics of 0.75 or greater. Fifteen models used calibration techniques to further refine the model. Using EMR data enabled final predictive models to use a wide variety of clinical measures such as laboratory results and vital signs; however, use of socioeconomic features or functional status was rare. Using natural language processing, three models were able to extract relevant psychosocial features, which substantially improved their predictions. Twenty six studies used logistic or Cox regression models, and the rest used machine learning methods. No statistically significant difference (difference 0.03, 95% confidence interval 0.0 to 0.07) was found between average C statistics of models developed using regression methods (0.71, 0.68 to 0.73) and machine learning (0.74, 0.71 to 0.77).
Conclusions On average, prediction models using EMR data have better predictive performance than those using administrative data. However, this improvement remains modest. Most of the studies examined lacked inclusion of socioeconomic features, failed to calibrate the models, neglected to conduct rigorous diagnostic testing, and did not discuss clinical impact.
DOI: 10.1136/bmj.m958
Source: https://www.bmj.com/content/369/bmj.m958