2021考研數學(三)線性代數部分大綱部分原文解析

2021-01-09 北京中公教育

2021考研數學三線性代數大綱原文解析

2021考研大綱已經發布,線性代數大綱原文如下:

一、行列式

考試內容

行列式的概念和基本性質 行列式按行(列)展開定理

考試要求

1.了解行列式的概念,掌握行列式的性質.

2.會應用行列式的性質和行列式按行(列)展開定理計算行列式.

二、矩陣

考試內容

矩陣的概念 矩陣的線性運算 矩陣的乘法 方陣的冪 方陣乘積的行列式 矩陣的轉置 逆矩陣的概念和性質 矩陣可逆的充分必要條件 伴隨矩陣 矩陣的初等變換 初等矩陣 矩陣的秩 矩陣的等價 分塊矩陣及其運算

考試要求

1.理解矩陣的概念,了解單位矩陣、數量矩陣、對角矩陣、三角矩陣的定義及性質,了解對稱矩陣、反對稱矩陣及正交矩陣等的定義和性質.

2.掌握矩陣的線性運算、乘法、轉置以及它們的運算規律,了解方陣的冪與方陣乘積的行列式的性質.

3.理解逆矩陣的概念,掌握逆矩陣的性質以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣.

4.了解矩陣的初等變換和初等矩陣及矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的逆矩陣和秩的方法.

5.了解分塊矩陣的概念,掌握分塊矩陣的運算法則.

三、向量

考試內容

向量的概念 向量的線性組合與線性表示 向量組的線性相關與線性無關 向量組的極大線性無關組 等價向量組 向量組的秩 向量組的秩與矩陣的秩之間的關係 向量的內積 線性無關向量組的正交規範化方法

考試要求

1.了解向量的概念,掌握向量的加法和數乘運算法則.

2.理解向量的線性組合與線性表示、向量組線性相關、線性無關等概念,掌握向量組線性相關、線性無關的有關性質及判別法.

3.理解向量組的極大線性無關組的概念,會求向量組的極大線性無關組及秩.

4.理解向量組等價的概念,理解矩陣的秩與其行(列)向量組的秩之間的關係.

5.了解內積的概念.掌握線性無關向量組正交規範化的施密特(Schmidt)方法.

更多考研數學大綱解析內容整理中,請持續關注......

相關焦點

  • 2021考研數學二考試大綱解讀:線性代數大綱原文解析
    2021考研數學二考試大綱解讀:線性代數大綱原文解析 2021考研大綱已於9月9日公布,考研大綱是對考研科目的考試範圍、考試要求、考試形式、試卷結構等權威政策指導性考研用書。
  • 2021考研數學二考試大綱解讀:高等數學部分大綱原文解析
    2021考研大綱已於9月9日公布,考研大綱是對考研科目的考試範圍、考試要求、考試形式、試卷結構等權威政策指導性考研用書。為方便考生了解2021考研數學二大綱內容,甘肅中公教育為大家整理了「2021考研數學二考試大綱解讀:高等數學部分大綱原文解析」相關信息,望考生及時查看。
  • 2021考研數學(三)高等數學部分大綱部分原文解析
    2021考研數學三高等數學大綱原文解析 2021年考研數學大綱已經發布,高等數學大綱原文如下: 一、函數、極限、連續 考試內容 函數的概念及表示法 函數的有界性、單調性、周期性和奇偶性
  • 2021考研數學(三)概率論與數理統計部分大綱原文解析
    2021考研數學三概率論與數理統計部分大綱原文解析 2021年考研數學大綱已經發布,概率論與數理統計大綱原文如下: 一、隨機事件和概率 考試內容 隨機事件與樣本空間 事件的關係與運算 完備事件組 概率的概念 概率的基本性質 古典型概率 幾何型概率
  • 2021考研大綱:考研數學一高等數學大綱原文解析
    2021考研大綱:考研數學一高等數學大綱原文解析 2021考研大綱是對2021年碩士研究生考試科目的考試範圍、考試要求、考試形式、試卷結構等權威政策指導性考研用書。
  • 2021考研數學一線性代數大綱原文解析
    2021考研大綱已經發布,線性代數大綱原文如下:一、行列式考試內容行列式的概念和基本性質 行列式按行(列)展開定理考試要求1.了解行列式的概念,掌握行列式的性質.2.會應用行列式的性質和行列式按行(列)展開定理計算行列式.
  • 2021考研數學二線性代數大綱部分原文解析
    2021考研大綱已經發布,線性代數大綱原文如下: 一、行列式 考試內容 行列式的概念和基本性質  行列式按行(列)展開定理 三、向量 考試內容 向量的概念 向量的線性組合和線性表示 向量組的線性相關與線性無關 向量組的極大線性無關組 等價向量組 向量組的秩 向量組的秩與矩陣的秩之間的關係 向量的內積 線性無關向量組的正交規範化方法 考試要求 1.理解
  • 2021考研數學二考試大綱原文解析及變化解讀
    2021考研數學二高等數學部分大綱原文解析2021年考研數學大綱已經發布,高等數學大綱原文如下
  • 乾貨:[數三]2021考研數學大綱之線性代數複習重點預測
    摘要:可能還有很多考生不明白考研數學大綱的作用,在這裡幫幫要告訴同學們的是考研數學大綱對我們的考研數學的複習起指導作用,能夠有效矯正   摘要:可能還有很多考生不明白考研數學大綱的作用,在這裡幫幫要告訴同學們的是考研數學大綱對我們的考研數學的複習起指導作用,能夠有效矯正複習方向偏差的問題,讓複習方向化零為整
  • 2021考研數學二高等數學部分大綱原文解析
    2021年考研數學大綱已經發布,高等數學大綱原文如下: 一、函數、極限、連續 考試內容: 函數的概念及表示法  函數的有界性、單調性 三、一元函數積分學 考試內容 原函數和不定積分的概念 不定積分的基本性質 基本積分公式 定積分的概念和基本性質 定積分中值定理 積分上限的函數及其導數 牛頓-萊布尼茨(Newton-Leibniz)公式 不定積分和定積分的換元積分法與分部積分法 有理函數、三角函數的有理式和簡單無理函數的積分
  • [數二]2021考研數學大綱線性代數考試內容整理(參考2020)
    可能還有很多考生不明白考研數學大綱的作用,在這裡小編要告訴同學們的是考研數學大綱對我們的考研數學的複習起指導作用,能夠有效矯正複習方向偏差的問題,讓複習方向化零為整,提高效率。所以一定要結合考研數學的要求進行複習,在2021考研數學大綱發布前,小編整理了2020考研數學二大綱線性代數的內容,同學們可以先作為參考哦。
  • 2016考研數學二大綱原文
    新東方網>大學教育>考研>考研資訊>考試大綱>數學大綱>正文2016考研數學二大綱原文 2015-09-18 20:00 來源:新東方網編輯整理
  • 考研數學線性代數部分怎樣複習?
    考研數學線代部分的考點和考察方式都比較固定,並且數一數二數三是難以區分出孰難孰易的,事實勝於雄辯,先給大家來一張圖▼這是根據數一、數二和數三在19年和20年的考研真題中整理出來的線代考點分布。紅色字體標註出來的部分表示題目相同,完全可以看出不管是數一數二還是數三,線代部分考查的知識點大部分是一樣的,所以複習方法基本可以通用!
  • 2018考研數學大綱,線性代數如何得分
    考研數學複習:考研數學複習先了解考察特點,命題趨勢,再對症下藥的複習,這樣才能提升效率。本文為廣大考生整理2018考研數學大綱,線性代數如何得分,更多考研數學怎麼複習、考研數學題型、考研數學大綱、考數學試題等備考資料,歡迎訪問北京研究生招生信息網。
  • 2021考研數學(二)大綱原文(完整版)
    2021考研數學(二)大綱原文(完整版) 2021考研大綱已公布,考研大綱是對考研科目的考試範圍、考試要求、考試形式、試卷結構等權威政策指導性考研用書。
  • 2021考研數學(一)大綱部分原文
    全國碩士研究生招生考試數學(一)考試大綱(2021年版) 一、函數、極限、連續 考試內容 函數的概念及表示法 函數的有界性、單調性、周期性和奇偶性 複合函數、反函數、分段函數和隱函數 基本初等函數的性質及其圖形 初等函數 函數關係的建立 數列極限與函數極限的定義及其性質
  • 海天數學名師姜曉千解析2011考研數學大綱
    海天數學名師姜曉千解析2011考研數學大綱主持人:各位網友,大家下午好,我們今天有幸請到海天的數學名師姜曉千老師,我們請到姜曉千老師的原因主要想請姜老師為我們解讀一下剛剛發布的2011年的考研新大綱,請姜老師給各位網友打個招呼。姜曉千:各位網友,大家下午好。
  • 2015考研數學大綱解析:特徵值和特徵向量學習方法指導
    2014年9月13日,2015考研數學大綱已經發布。正如所料,與2014相比,2015年考研數學考試大綱考試內容沒有實質性變化。當然,特徵值和特徵向量部分也沒有發生變化。下面我以特徵值和特徵向量為例,深度解析考研數學大綱,希望對大家的學習有所幫助。
  • 2018考研管理類聯考數學基礎部分大綱分析——代數部分
    摘要:2018考研管理類聯考大綱於9月15日發布,關注大綱解析,獲取大綱變化,考研幫為你持續關注。摘要:2018考研管理類聯考大綱於9月15日發布,關注大綱解析,獲取大綱變化,考研幫為你持續關注。   其中一個方法就是分析考綱,把考試大綱分析透徹,我們的複習就會達到一個如虎添翼的效果。為了幫助廣大考生更加高效地複習,中公考研初數教研室結合今年的考試大綱,為各位考生朋友解讀了考試大綱。   通過今年的考試大綱可以看出,管理類聯考初等數學的考綱基本保持穩定,沒有發生什麼重大變化。
  • 2020考研數學大綱解析及後期備考指南
    2020考研數學新大綱已發布,考研數學大綱對於考研數學複習具有指導意義,讓複習方向化零為整,提高複習效率,在考研大綱發布後,中國教育在線考研頻道第一時間整理2020考研數學大綱原文,速來查閱吧!更有2020考研大綱名師解析,全程助力備考,不容錯過。