差分信號線的分析

2020-12-08 電子產品世界

隨著近幾年對速率的要求快速提高,新的總線協議不斷的提出更高的速率。傳統的總線協議已經不能夠滿足要求了。串行總線由於更好的抗幹擾性,和更少的信號線,更高的速率獲得了眾多設計者的青睞。而串行總線又尤以差分信號的方式為最多。所以在這篇中整理了些有關差分信號線的設計和大家探討下。

本文引用地址:http://www.eepw.com.cn/article/187105.htm


1.差分信號線的原理和優缺點

差分信號(Differential Signal)在高速電路設計中的應用越來越廣泛,電路中最關鍵的信號往往都要採用差分結構設計,什麼另它這麼倍受青睞呢?在PCB 設計中又如何能保證其良好的性能呢?帶著這兩個問題,我們進行下一部分的討論。 何為差分信號?通俗地說,就是驅動端發送兩個等值、反相的信號,接收端通過比較這兩個電壓的差值來判斷邏輯狀態「0」還是「1」。而承載差分信號的那一對走線就稱為差分走線。

差分信號和普通的單端信號走線相比,最明顯的優勢體現在以下三個方面:

a.抗幹擾能力強,因為兩根差分走線之間的耦合很好,當外界存在噪聲幹擾時,幾乎是同時被耦合到兩條線上,而接收端關心的只是兩信號的差值,所以外界的共模噪聲可以被完全抵消。

b.能有效抑制EMI,同樣的道理,由於兩根信號的極性相反,他們對外輻射的電磁場可以相互抵消,如圖在A-A『的電流是從右到左,那B-B『的是從左到右,那麼按右手螺旋定則,那他們的磁力線是互相抵消的。耦合的越緊密,互相抵消的磁力線就越多。洩放到外界的電磁能量越少。

c.時序定位精確,由於差分信號的開關變化是位於兩個信號的交點,而不像普通單端信號依靠高低兩個閾值電壓判斷,因而受工藝,溫度的影響小,能降低時序上的誤差,同時也更適合於低幅度信號的電路。目前流行的LVDS(low voltage differential signaling)就是指這種小振幅差分信號技術。


2.差分信號的一個實例:LVDS

LVDS(Low Voltage Differential Signaling)是一種低擺幅的電流型差分信號技術,它使得信號能在差分PCB線對或平衡電纜上以幾百Mbps的速率傳輸,其低壓幅和低電流驅動輸出實現了低噪聲和低功耗。LVDS驅動器由一個驅動差分線對的電流源組成通常電流為3.5mA),LVDS接收器具有很高的輸入阻抗,因此驅動器輸出的電流大部分都流過100Ω的匹配電阻,並在接收器的輸入端產生大約350mA 的電壓。當驅動器翻轉時,它改變流經電阻的電流方向,因此產生有效的邏輯″1″和邏輯″0″狀態。低擺幅驅動信號實現了高速操作並減小了功率消耗,差分信號提供了適當噪聲邊緣和功率消耗大幅減少的低壓擺幅。功率的大幅降低允許在單個集成電路上集成多個接口驅動器和接收器。這提高了PCB板的效能,減少了成本。

不管使用的LVDS傳輸媒質是PCB線對還是電纜,都必須採取措施防止信號在媒質終端發生反射,同時減少電磁幹擾。LVDS要求使用一個與媒質相匹配的終端電阻(100±20Ω),該電阻終止了環流信號,應該將它儘可能靠近接收器輸入端放置。LVDS驅動器能以超過155.5Mbps的速度驅動雙絞線對,距離超過10m。對速度的實際限制是:

①送到驅動器的TTL數據的速度;

②媒質的帶寬性能。

通常在驅動器側使用復用器、在接收器側使用解復用器來實現多個TTL信道和一個LVDS信道的復用轉換,以提高信號速率,降低功耗。並減少傳輸媒質和接口數,降低設備複雜性。

LVDS接收器可以承受至少±1V的驅動器與接收器之間的地的電壓變化。由於LVDS驅動器典型的偏置電壓為+1.2V,地的電壓變化、驅動器偏置電壓以及輕度耦合到的噪聲之和,在接收器的輸入端相對於接收器的地是共模電壓。這個共模範圍是:+0.2V~+2.2V。建議接收器的輸入電壓範圍為:0V~+2.4V。


3.差分信號的布線要求:

對於PCB 工程師來說,罟刈⒌幕故僑綰穩繁T謔導首呦咧心芡耆發揮差分走線的這些優勢。也許只要是接觸過Layout 的人都會了解差分走線的一般要求,即差分對的布線有兩點要注意,一是兩條線的長度要儘量一樣長,等長是為了保證兩個差分信號時刻保持相反極性,減少共模分量。另一是兩線的間距(此間距由差分阻抗決定)要一直保持不變,也就是要保持平行。平行的方式有兩種,一為兩條線走在同一走線層(side-by-side),一為兩條線走在上下相鄰兩層(over-under)。一般以前者side-by-side 實現的方式較多。

等距則主要是為了保證兩者差分阻抗一致,減少反射。對差分對的布線方式應該要適當的靠近且平行。所謂適當的靠近是因為這間距會影響到差分阻抗(differential impedance)的值, 此值是設計差分對的重要參數。需要平行也是因為要保持差分阻抗的一致性。若兩線忽遠忽近, 差分阻抗就會不一致, 就會影響信號完整性(signal integrity)及時間延遲(timing delay)。

下面是差分傳輸線模型

為便於分析,差分線對常常根據它的奇模和偶模阻抗和延遲來描述,而這些與其差模和共模對應的部分是密切相關的,因此可以用方程1 來計算。

這兒Ctot = Cself + Cm 。Cself 是一條線與地之間的電容,而Cm 是兩條線之間的電容。Lself 和Lm 分別是一條線的自電感,和兩條線之間的互電感。

差分阻抗被定義為在兩條差分驅動的導線之間所測得的阻抗。(所謂差分驅動就是指當兩個完全一樣,但極性相反的信號)。差分阻抗是對著奇模阻抗而言的,所謂奇模阻抗是指當兩條導線被差分驅動[3]時,在差分線對中一條傳輸導線的阻抗。偶模阻抗是指當兩條導線都被一個單一的對地共模信號驅動時,在差分線對中兩條導線的阻抗。

利用方程1,可以推得:

差分阻抗

共模阻抗

但所有這些規則都不是用來生搬硬套的,不少工程師似乎還不了解高速差分信號傳輸的本質。下面重點討論一下PCB 差分信號設計中幾個常見的誤區。

誤區一:認為差分信號不需要地平面作為回流路徑,或者認為差分走線彼此為對方提供回流途徑。造成這種誤區的原因是被表面現象迷惑,或者對高速信號傳輸的機理認識還不夠深入。雖然差分電路對於類似地彈以及其它可能存在於電源和地平面上的噪音信號是不敏感的。地平面的部分回流抵消並不代表差分電路就不以參考平面作為信號返迴路徑,其實在信號回流分析上,差分走線和普通的單端走線的機理是一致的,即高頻信號總是沿著電感最小的迴路進行回流,最大的區別在於差分線除了有對地的耦合之外,還存在相互之間的耦合,哪一種耦合強,那一種就成為主要的回流通路。

在PCB 電路設計中,一般差分走線之間的耦合較小,往往只佔10~20%的耦合度,更多的還是對地的耦合,所以差分走線的主要回流路徑還是存在於地平面。當地平面發生不連續的時候,無參考平面的區域,差分走線之間的耦合才會提供主要的回流通路。儘管參考平面的不連續對差分走線的影響沒有對普通的單端走線來的嚴重,但還是會降低差分信號的質量,增加EMI,要儘量避免。也有些設計人員認為,可以去掉差分走線下方的參考平面,以抑制差分傳輸中的部分共模信號,但從理論上看這種做法是不可取的,阻抗如何控制?不給共模信號提供地阻抗迴路,勢必會造成EMI 輻射,這種做法弊大於利。

所以要保持PCB地線層返迴路徑寬而短。儘量不要跨島(跨過相鄰電源或地層的分隔區域。)比如主板設計中的USB和SATA及PCI-EXPRESS等最好不要有跨島的做法。保證這些信號的下面是個完整地平面或電源平面。

相關焦點

  • 淺談差分處理和信號分析
    打開APP 淺談差分處理和信號分析 佚名 發表於 2020-03-09 09:54:38 差分線是PCB設計中非常重要的一部分信號線,信號處理要求也是相當嚴謹,今天為大家介紹下差分信號的原理以及其在PCB設計中的處理方法。
  • 單端、差分、差模、共模信號的愛恨情仇
    所以單端信號的優點就是成本低,可以說單端信號線上傳輸的信號就是信號線和地線之間電位差,這樣的話其缺點就是優點造成的,即抗幹擾能力比較差。這句話如何證明呢?差分信號差分信號常用於高速電路中,例如 LVDS(低電壓差分信號)。差分信號如上圖的下半部分,顧名思義,差分信號就是兩條信號線。然而「差分」這兩個字所謂何意呢?
  • 學習筆記之差分線的那些事
    同時我們也可以看到,組成差分信號的兩根單端信號在傳輸線上傳輸仍要遵循單端信號傳輸的各種規律,所以我們在看DDRx時鐘信號質量時,既要看差分信號質量,同時還要分別看單端信號的質量情況。一般我們不看共模信號,通常它不攜帶有用信息,理想情況下,共模信號是恆定的,但很多情況下我們的傳輸線不可能完全對稱,所以就會帶來共模分量的改變,這個分量會帶來潛在的EMI問題。
  • pcb的地線,電源線,信號線
    地線,電源線,信號線之間的關係:地線>電源線>信號線,通常信號線寬為:0.2~0.3mm,最細寬度可達0.05~0.07mm,電源線為1.2~2.5 mm 。印製導線的公共地線最好形成環路或網狀,這是因為當在同一塊板上有許多集成電路,特別是有耗電多的元件時,由於圖形上的限制產生了接地電位差,從而引起噪聲容限的降低,當做成迴路時,接地電位差減小。
  • 串行總線--差分線(差分互連)基本原理及優缺點(一)
    為了解決這些問題,一種全新的數據傳輸方式應運而生,如圖1所示,他就是-----差分(差分線、差分互聯)。我們可以看到,使用差分方式傳輸,信號的電壓峰峰值被放大了一倍,但是單根線上的電流卻保持不變。如果採用傳統的單線傳輸方式,單根線的dI/dt也會增加一倍,這樣更容易造成EMI問題。  差分線優點2:差分信號的值很大程度上與「地」的精確值無關,能很好的抵抗電源的幹擾。就像下面這幅圖,差分信號關注的是兩根線之間的電壓差值,與海平面的高度關係不大。
  • 關於差分信號,你了解多少?
    差分傳輸是一種信號傳輸的技術,區別於傳統的一根信號線一根地線的做法。差分傳輸在這兩根線上都傳輸信號,這兩個信號的振幅相等、相位相反。在這兩根線上傳輸的信號就是差分信號。差分信號又稱差模信號,是相對共模信號而言的。
  • 差分放大電路分析
    差分放大電路又稱為差動放大電路,當該電路的兩個輸入端的電壓有差別時,輸出電壓才有變動,因此稱為差動。差分放大電路是由靜態工作點穩定的放大電路演變而來的。 集成電路中電路都是用的各種恆流源作偏置,偏置電路中電流都是恆定不變的,所有的參數計算都是圍繞這個恆定的電流。
  • 差分信號的原理以及在PCB設計中的處理方法解析
    什麼是差分信號 差分傳輸是一種信號傳輸的技術,區別於傳統的一根信號線一根地線的做法,差分傳輸在這兩根線上都傳輸信號,這兩個信號的振幅相等,相位相差180度,極性相反。在這兩根線上傳輸的信號就是差分信號。
  • 信號在信號線和參考平面上傳送
    打開APP 信號在信號線和參考平面上傳送 村田中文技術社區 發表於 2021-01-14 15:06:00 任何注入到系統中的電流最終都要回到源端
  • 差分信號回流路徑的全波電磁場解析
    1、差分信號簡介當驅動器在傳輸線上驅動一路信號時,在信號線和返迴路徑之間會存在一個信號電壓,通常稱為單端傳輸線信號。當兩路驅動器驅動一個差分對時,除了各自 的單端信號外,這兩路信號線之間還存在著一個電壓差,稱為差分信號。
  • 差分放大電路的CMRR與輸入電阻分析
    (3)拖尾恆流源的寄生電容隨頻率變化而變化 這個會引起恆流源電流的變化,差分輸入端射極或源極電阻用恆流源代替的目的是保持電流恆定和高阻抗。但它的電流如果隨頻率發生變化,勢必降低差分輸入端的共模抑制能力。
  • 差分阻抗-什麼是差分
    令事情變得更困難的是,它說:「……因為兩根走線之間的耦合可以降低有效阻抗,使用50Ω的設計規則來得到一個大約80Ω的差分阻抗!」這的確讓人感到困惑! 這篇文章向你展示什麼是差分阻抗。除此之外,還討論了為什麼是這樣,並且向你展示如何正確地計算它。
  • 信號線用共模扼流圈的使用方法
    1.信號線用共模扼流圈的偏移改善功能本文引用地址:http://www.eepw.com.cn/article/201809/388248.htm  在信號線中使用共模扼流圈的目的在於消除共模噪音
  • 差分放大電路特點_差分放大電路的作用
    差分放大電路簡介   差分放大電路利用電路參數的對稱性和負反饋作用,有效地穩定靜態工作點,以放大差模信號抑制共模信號為顯著特徵,廣泛應用於直接耦合電路和測量電路的輸入級。但是差分放大電路結構複雜、分析繁瑣,特別是其對差模輸入和共模輸入信號有不同的分析方法,難以理解,因而一直是模擬電子技術中的難點。差分放大電路:按輸入輸出方式分:有雙端輸入雙端輸出、雙端輸入單端輸出、單端輸入雙端輸出和單端輸入單端輸出四種類型。按共模負反饋的形式分:有典型電路和射極帶恆流源的電路兩種。
  • PoE接口如何抵禦差分模式瞬態電壓
    PoE應用中的差分模式瞬態響應         正如前面提到的,PoE接口的保護可能會特別具有挑戰性,因為除了由ESD和電湧引起的瞬態過程之外,在連接直流電源時,有幾種經常發生的情形會在乙太網傳輸線上引發差分電湧。這樣自然會對PHY造成災難性的故障或難題,劇烈的衝擊可能會損壞IC。
  • 手把手教您產品EMC問題分析和整改思路!
    在產品設計時,我們通常會採用蛇形設計、差分信號走線等長、等距設計,來儘可能減少電磁輻射(EMI)對主板其餘部件和外界的影響。今天,編者就具體以某車機產品的高速DDR時鐘信號設計為例,跟大家講解PCB布線設計EMC整改的具體分析思路、方案設計。一.現象描述1.
  • Sensorex公司發布新款差分pH/氧化還原電位水質分析傳感器
    加利福尼亞州加登格羅夫市2016年3月29日電 /美通社/ -- 英國豪邁子公司Sensorex公司最新推出SD7000系列差分pH/ORP水質分析傳感器,為工業和市政水處理廠商提供了一種可靠的、極低成本的水質分析傳感器技術。
  • AppCAD計算天線信號線特性阻抗
    GPS接收機設計時,天線信號線的特性阻抗要求在50歐姆,以實現與天線的阻抗匹配,若人工去計算,計算較繁瑣,較容易出錯,所以有很我公司推出了計算高頻設計時計算特性阻抗
  • 如何防止PoE接口應用差分模式的瞬態電壓威脅
    PoE應用中的差分模式瞬態響應 正如前面提到的,PoE接口的保護可能會特別具有挑戰性,因為除了由ESD和電湧引起的瞬態過程之外,在連接直流電源時,有幾種經常發生的情形會在乙太網傳輸線上引發差分電湧。這樣自然會對PHY造成災難性的故障或難題,劇烈的衝擊可能會損壞IC。
  • 共模與差模的含義及區別
    前者叫"差模",後者叫"共模"。對差分放大器,兩路輸入的幹擾信號,如果是大小不相等,或方向不相同,即為差模幹擾信號。  通常我們使用的電器是兩線的,一根火線(L),一根零線(N),零線認為是三相電的中線,同時還有一根接地線叫做地線,。零線與火線之間的幹擾叫做差模幹擾,火線與地線之間的幹擾叫做共模幹擾。