焊點失效惹眾怒?其實無鉛器件比你想像中「堅強」

2021-01-15 可靠性技術交流

前言 

隨著電子信息產業的日新月異,微細間距器件發展起來,組裝密度越來越高,誕生了新型SMT、MCM技術,微電子器件中的焊點也越來越小,而其所承載的力學、電學和熱力學負荷卻越來越重,對可靠性要求日益提高。電子封裝中廣泛採用的SMT封裝技術及新型的晶片尺寸封裝(CSP)、焊球陣列(BGA)等封裝技術均要求通過焊點直接實現異材間電氣及剛性機械連接(主要承受剪切應變),它的質量與可靠性決定了電子產品的質量。一個焊點的失效就有可能造成器件整體的失效,因此如何保證焊點的質量是一個重要問題。傳統鉛錫焊料含鉛,而鉛及鉛化合物屬劇毒物質,長期使用含鉛焊料會給人類健康和生活環境帶來嚴重危害。目前電子行業對無鉛軟釺焊的需求越來越迫切,已經對整個行業形成巨大衝擊。無鉛焊料已經開始逐步取代有鉛焊料,但無鉛化技術由於焊料的差異和焊接工藝參數的調整,必不可少地會給焊點可靠性帶來新的問題。因此,無鉛焊點的可靠性也越來越受到重視。本文敘述焊點的失效模式以及影響無鉛焊點可靠性的因素,同時對無鉛焊點可靠性測試方法等方面做了介紹。 

    焊點的失效模式 

焊點的可靠性實驗工作,包括可靠性實驗及分析,其目的一方面是評價、鑑定集成電路器件的可靠性水平,為整機可靠性設計提供參數;另一方面,就是要提高焊點的可靠性。這就要求對失效產品作必要的分析,找出失效模式,分析失效原因,其目的是為了糾正和改進設計工藝、結構參數、焊接工藝等,焊點失效模式對於循環壽命的預測非常重要,是建立其數學模型的基礎。下面介紹3種失效模式[2]。 

   2.1 焊接工藝引起的焊點失效 

焊接工藝中的一些不利因素及隨後進行的不適當的清洗工藝可能會導致焊點失效。SMT焊點可靠性問題主要來自於生產組裝過程和服役過程。在生產組裝過程中,由於焊前準備、焊接過程及焊後檢測等設備條件的限制,以及焊接規範選擇的人為誤差,常造成焊接故障,如虛焊、焊錫短路及曼哈頓現象等。另一方面,在使用過程中,由於不可避免的衝擊、振動等也會造成焊點的機械損傷,如波峰焊過程中快速的冷熱變化對元件造成暫時的溫度差,使元件承受熱一機械應力。當溫差過大時,導致元件的陶瓷與玻璃部分產生應力裂紋。應力裂紋是影響焊點長期可靠性的不利因素。同時在厚、薄膜混合電路(包括片式電容)組裝過程中,常常有蝕金、蝕銀的現象。這是因為焊料中的錫與鍍金或鍍銀引腳中的金、銀形成化合物,從而導致焊點的可靠性降低。此外,過度的超聲波清洗也可能對焊點的可靠性有影響。 

   2.2 時效引起的失效 

當熔融的焊料與潔淨的基板相接觸時,在界面會形成金屬間化合物(intermetallic Compounds)。在時效過程中,焊點的微結構會粗化,界面處的IMC亦會不斷生長。焊點的失效部分依賴於IMC層的生長動力學。界面處的金屬間化合物雖然是焊接良好的一個標誌,但隨著服役過程中其厚度的增加,會引起焊點中微裂紋萌生乃至斷裂。當其厚度超過某一臨界值時,金屬間化合物會表現出脆性,而由於組成焊點的多種材料間的熱膨脹失配,使焊點在服役過程中會經歷周期性的應變,形變量足夠大時會導致失效。研究表明Sn60/Pb40軟釺料合金中加入微量稀土元素鑭,會減少金屬化合物的厚度,進而使焊點的熱疲勞壽命提高2倍,顯著改善表面組裝焊點的可靠性。 

   2.3 熱循環引起的失效 

電子器件在服役條件下,電路的周期性通斷和環境溫度的周期性變化會使焊點經受溫度循環過程。封裝材料問的熱膨脹失配,將在焊點中產生應力和應變。如在SMT中晶片載體材料A1203陶瓷的熱膨脹係數(CTE)為6×10-6℃-1,而環氧樹脂/玻璃纖維基板的CTE則為15×10-6℃-1。溫度變化時,焊點將承受一定的應力和應變。一般焊點所承受應變為1%~20%。在THT工藝中,器件的柔性引腳會吸收由於熱失配而引起的大部分應變,焊點真正承受的應變是很小的。而在SMT中,應變基本由焊點來承受,從而會導致焊點中裂紋的萌生和擴展,最終失效。由於焊點是因熱膨脹係數不匹配產生熱應力而開裂並導致失效,所以提高無引線元件與基板材料的熱匹配最容易成為人們首先關注的問題。目前已研究開發出42%Ni-Fe合金(CTE=5×10-6℃-1)、Cu-36%Ni-Fe合金(銦瓦合金)、Cu-Mo-Cu及石英纖維複合材料等新材料,其中Cu-銦瓦-Cu複合基板改變其中各成份比例,用此基板鉛焊的焊件經1500次熱衝擊實驗,無焊點失效。另外還開發了在印製板上複合一層彈性較大的應力吸收層,用以吸收由於熱失配引起的應力等方面的技術,也取得了比較好的效果。但新型基板材料的工藝複雜,價格相對昂貴,其實用性受到一定限制[3]。 

   影響無鉛焊點可靠性的因素 

   3.1 對無鉛焊料的性能要求 

傳統錫鉛焊料因具有價廉、易焊接、成形美觀以及物理、力學和冶金性能好等特點而作為連接元器件和印刷電路板的標準材料,並形成了一整套的使用工藝,長期以來深受電子廠商的青睞。但由於鉛及鉛化合物對人類健康和生活環境的不利影響,限制和禁止使用含鉛焊料的呼聲日益高漲,各國政府紛紛制定相應的法規約束電子產品的使用材料和廢棄物的處理,電子封裝的環境友好化要求已成為全球趨勢。因此目前電子行業全面面臨無鉛化的要求,已經對整個行業形成巨大衝擊。近幾年無鉛焊料迅速發展起來,最常用的是Sn-Ag-Cu系列。

微電子領域使用的焊料有著很嚴格的性能要求,無鉛焊料也不例外,不僅包括電學和力學性能,還必須具有理想的熔融溫度。從製造工藝和可靠性兩方面考慮,表1列出了焊料合金的一些重要性能[4,5]。 


   3.2 影響無鉛焊點可靠性的因素 

與傳統的含鉛工藝相比,無鉛化焊接由於焊料的差異和工藝參數的調整,必不可少地會給焊點可靠性帶來一定的影響。首先是目前無鉛焊料的熔點較高,一般都在217℃左右,而傳統的Sn-Pb共晶焊料熔點是183℃,溫度曲線的提升隨之會帶來焊料易氧化及金屬間化合物生長迅速等問題。其次是由於焊料不含Pb,焊料的潤溼性能較差,容易導致產品焊點的自校準能力、拉伸強度、剪切強度等不能滿足要求。以某廠商為例,原含鉛工藝焊點不合格率一般平均在50×10-6(0.05%)左右,而無鉛工藝由於焊料潤溼性差,不合格率上升至200×10-6~500×10-6(0.2~0.5%)[6]。 

鑑於無鉛化焊點可靠性方面目前仍存在許多問題,有必要對此進行分析。無鉛焊點的可靠性問題主要來源於:焊點的剪切疲勞與蠕變裂紋[7,8,9]、電遷移[8,10]、焊料與基體界面金屬間化合物形成裂紋[7,8,11,12]、Sn晶鬚生長引起短路[7,8],電腐蝕和化學腐蝕問題r¨等。以下我們主要從設計、材料與工藝角度介紹影響無鉛焊點可靠性的一些因素。 

   (1)設計:PCB的合理設計問題。如焊盤設計不合理、發熱量大的元件密集分布、相鄰高大元件在回流焊時產生「高樓效應」、形成熱風衝擊等。  

   (2)材料:焊料的選擇極為重要。目前,大多採用錫銀銅合金系列,液相溫度是217℃-221℃,這就要求再流焊具有較高的峰值溫度,如前所述會帶來焊料及導體材料(如Cu箔)易高溫氧化、金屬間化合物生長迅速等問題。因為在焊接過程中,熔融的釺料與焊接襯底接觸時,由於高溫在界面會形成一層金屬間化合物(IMc)。其形成不但受回流焊溫度、時間的控制,而且在後期使用過程中其厚度會隨時間增加。研究表明界面上的金屬間化合物是影響焊點可靠性的一個關鍵因素。過厚的金屬間化合物層的存在會導致焊點斷裂、韌性和抗低周疲勞能力下降,從而導致焊點的可靠性降低。以當前最為成熟的Sn-Ag系無鉛焊料為例,由於熔點更高,相應的再流焊溫度也將提高,加之無鉛焊料中Sn含量都比Sn-Pb焊料高,這兩者都增大了焊點和基體間界面上形成金屬問化合物的速率,導致焊點提前失效[13]。另外,由於無鉛焊料和傳統Sn-Pb焊料成分不同,因而它們和焊盤材料,如Cu、Ni、AgPd等的反應速率及反應產物可能不同,焊點也會表現出不同的可靠性。同時焊料和助焊劑的兼容性也會對焊點的可靠性產生非常大的影響。有研究表明:焊料和助焊劑各成分之間不兼容會導致附著力減小。此外,由於熱膨脹係數不匹配,又會加快焊料周期性的疲勞失效。因此要特別注意選擇兼容性優良的焊料和助焊劑,才能耐受住無鉛再流焊時的高溫衝擊。 

另外,各互連焊接部件均來自於不同生產廠商,因而部件質量難免參差不齊,如器件引腳可焊性不良等,對無鉛工藝焊點可靠性有較大影響。比較典型的例子是.PCB板焊盤質量問題。由於以前的熱風整平(HASL)焊盤塗層工藝存在一些缺點,因此目前OEM廠商應用較廣泛的包括有機可焊性保護層(OSP)和Ni/Au塗層工藝。其中Ni/Au塗層又有浸金法和鍍金法兩種,浸金法由於工藝簡單而較受國內廠商青睞,但此法難於控制Au層厚度,常會出現Au層厚度不足導致其下的Ni層氧化,影響回流焊接時焊點的性能。對於此種情況,廠商一般可用俄歇電子能譜儀(AES)精確測量PCB焊盤的Au層厚度是否符合規格。 

(3)工藝:在SMT、MCM製作工藝過程中,通常會遇到諸如焊料儲存溫度不當、焊盤焊料不足、再流焊溫度曲線設置不當等問題。就無鉛焊接而言,再流焊工藝溫度曲線的優化至為重要,優良的工藝既可保證形成高可靠性的焊接,又保持儘可能低的峰值溫度。因此,目前除日本以外,其他國家的消費電子公司似乎都接受了錫銀銅合金系列,合金中銀所佔比例為3.0%~4.7%,銅為0.5%-3.0%。不同成分的合金熔點相差不大,基本上在217℃-221℃之間,而錫鉛合金(63%的錫和37%的鉛)的液相溫度是183℃,兩者相差34℃。因此嚴密監控再流工藝中的關鍵變量,如峰值溫度、高於液相溫度的時間、浸漬時間、浸漬溫度以及由於選擇焊劑和焊膏而引起的斜坡速率,以確保再流焊過程保持1.33或高於1.33的Cpk。另外需注意的一點是含Bi無鉛焊料的使用問題。研究發現,含Bi焊料與Sn-Pb塗層的器件接觸時,回流焊後會生成Sn-Pb-Bi共晶合金,熔點只有99.6℃,極易導致焊接部位開裂的發生。因此對含Bi無鉛焊料的使用需注意器件塗層是否為Sn-Pb塗層。 

另外,關於無鉛焊接工藝中出現的空洞問題。空洞是互連焊點在回流焊接中常見的一種缺陷,在BGA/CSP等器件上表現得尤為突出。由於空洞的大小、位置、所佔比例以及測量方面的差異性較大,至今對空洞水平的安全性評估仍未統一。有經驗的工程師習慣將無較大空洞(小尺寸的空洞體積之和不超過焊點體積的0.5%)、空洞比例低於15%~20%,且不集中於連接處的空洞歸於回流焊接中常見的一種缺陷,並認為是可以接受的;另一方面,按照Motorola的研究結果認為直徑3μm~5μm的空洞事實上能提高焊點的長期可靠性,因為它在一定程度上可以阻止焊點中裂紋的擴展。但一般認為大的空洞,或空洞面積達到一定比例後會給可靠性帶來不利影響。 

因此,在無鉛焊接中,空洞仍然是一個必須關注的問題。在熔融狀態下,Sn/Ag/Cu合金比Sn-Pb合金的表面張力更大,表面張力的增加勢必會使氣體在冷卻階段的外溢更加閒難,使得空洞比例增加。這一點在無鉛錫膏的研發過程中得到證實,結果顯示使用無鉛錫膏的焊點中的空洞數量多於使用錫鉛錫膏的焊點。大的空洞和一些小的球形空洞是由於助焊劑的揮發造成的,錫膏中助焊劑的配比是影響焊點空洞的最直接因素,因此無鉛錫膏仍有很大的改善空間。作為新一代的無鉛錫膏產品,Multicore(96SC LF32OAGS88)由於增加了助焊劑在高溫的活性,實現了技術上的長足飛躍,使得無鉛焊點的空洞水平可降低到7.5%左右。近兩年隨著材料研究方面的進展,研製的第二代通用型無鉛焊膏除了具有更寬的工藝窗口、更容易應用、有更好的外觀外,最為重要的是解決了空洞問題。 

   無鉛焊點可靠性測試方法 

無鉛焊點可靠性測試,主要是對電子組裝產品進行熱負荷試驗(溫度衝擊或溫度循環試驗);按照疲勞壽命試驗條件對電子器件結合部進行機械應力測試;使用模型進行壽命評估。目前比較著名的模型有低循環疲勞的Coffin-Manson模型,一般在考慮平均溫度與頻率的影響時使用修正Coffin-Manson模型,而在考慮材料的溫度特性及蠕變關係時採用Coffin-Manson模型。 

無鉛焊點可靠性測試方法主要有外觀檢查、X-ray檢查、金相切片分析、強度(抗拉、剪切)、疲勞壽命、高溫高溼、跌落實驗、隨機震動、可靠性檢測方法等。 

外觀檢查:無鉛和有鉛焊接的焊點從外表看是有差別的,並影響AOI系統的正確性。無鉛焊點的條紋更明顯,並且比相應的有鉛焊點粗糙,這是從液態到固態的相變造成的。因此這類焊點看起來顯得更粗糙、不平整。另外,由於無鉛焊料的表面張力較高,不像有鉛焊料那麼容易流動,形成的圓角形狀也不盡相同。因此檢測儀器必須做一些參數或程序調整,自動光學檢測儀(AOI)製造商已經推出了相應的解決方案,其中包括歐姆龍採用三色光源和不同的照射角度將焊點的三維形狀用二維圖像表示出來,而安捷倫也在最近推出了採用固態建模(SSM)技術的三維自動光學檢測設備等。 

X-ray檢查:無鉛焊的球形焊點中虛焊增多。無鉛焊的焊接密度較高,可以檢測出焊接中出現的裂縫和虛焊。銅、錫和銀應屬於「高密度」材料,為了進行優良焊接的特性表徵、監控組裝工藝,以及進行最重要的焊點結構完整性分析,有必要對X射線系統進行重新校準,對檢測設備有較高要求。 

準自動焊點可靠性檢測技術是利用光熱法逐點檢測電路板焊點質量的一種先進技術,具有檢測精度高、可靠性好、檢測時不須接觸或破壞被測焊點等特點。檢測時對印製電路板的焊點逐點注入確定的雷射能量,同時用紅外探測器監測焊點在受到雷射照射後產生的熱輻射。由於熱輻射特性與焊點的質量狀況有關,故可據此判定焊點的質量好壞。雷射與焊點的對準和注入以及焊點質量差別均由計算機及相應的軟體完成。測試裝置包括YJLG雷射系統、紅外探測系統、X-Y掃描工作平臺以及由計算機控制的驅動系統、閉路電視監視系統、判讀軟體等五部分組成。此技術的焊點重缺陷檢出率為100%,,其他缺陷檢出率遠高於人工檢測。檢測速度滿足小批量生產需要,特別適用於可靠性要求高、批量小的產品檢測。 

在無鉛工藝焊點可靠性測試中,比較重要的是針對焊點與連接元器件熱膨脹係數不同進行的溫度相關疲勞測試,包括等溫機械疲勞測試、熱疲勞測試及耐腐蝕測試等。其中根據測試結果可以確認相同溫度下不同無鉛材料的抗機械應力能力不同,同時有研究表明不同無鉛材料顯示出不同的失效機理,失效形態也各不相同。 

對製造商來說,可靠性屬於比較高層次的考慮因素,但優良的製造工藝方面還是最重要的,沒有先進的製造工藝就沒有較高的可靠性。所以改進材料和工藝是解決採用無鉛焊所出現的可靠性和失效缺陷的關鍵。 

   結論 

焊點在微電子封裝產業中起著舉足輕重的作用,相關設計、工藝均應引起充分重視。積極優化焊接工藝、找出失效模式、分析失效機理、提高產品質量和可靠性水平,對電子封裝產業均有重要的意義。 

無鉛焊點由於焊料的差異和焊接工藝參數的調整,必不可少地會給焊點可靠性帶來新的問題。我們從設計、材料及工藝角度分析了影響無鉛焊點可靠性的因素,如金屬間化合物厚度增加、材料的熱匹配問題、空洞問題、可靠性測試參數的改變等。 

無鉛化技術已經日趨成熟,但是在無鉛化進程中還存在一些懸而未決的問題,如焊點的剪切疲勞、蠕變問題、虛焊現象、焊點熱疲勞的主要變形機制、焊點的顯微結構對焊點的疲勞行為的影響與作用機制等,都有待進一步研究。


來源:電子五所環境可靠性試驗資訊

相關焦點

  • 無鉛焊點可靠性問題分析及測試方法
    嘉峪檢測網已開通行業專欄,都是你想要的! 以下為正文: 隨著電子信息產業的日新月異,微細間距器件發展起來,組裝密度越來越高,誕生了新型SMT、MCM技術,微電子器件中的焊點也越來越小,而其所承載的力學、電學和熱力學負荷卻越來越重,對可靠性要求日益提高。
  • 影響混合合金焊點工藝可靠性的因素
    元器件開裂現象與CTE的差異、溫度、元器件的尺寸大小成正比。0201、0402、0603小元件一般很少開裂,而1206以上的大元件發生開裂失效的概率就會比較高。(2)爆米花現象將更嚴重。對潮溼敏感元器件(MSD)而言,溫度每提高10℃,其可靠性級別就將降低1級。解決措施是在滿足質量要求的前提下儘量降低再流焊接的峰值溫度,以及對潮溼敏感器件進行去潮烘烤處理。
  • 在應用無鉛錫膏後如何解決氣泡難題?
    大家用無鉛錫膏作業的情況下,總是有很多出泡的難題。焊點中的氣泡不但危害焊點的穩定性,還會繼續提升元器件無效的機率。應用無鉛錫膏時,焊點中的氣泡是電子器件作業時的儲熱場地,電子器件作業造成的熱能會在氣泡中累積,造成焊點環境溫度沒法成功根據焊盤輸出。
  • 為何要在無鉛錫膏中添加銀?
    無鉛錫膏的生產加工過程中會添加少許的銀,這其實是銀最主要的的功效決定的。銀的導電性能是所用金屬材料中最穩定也是最好的,因此無鉛錫膏中添加銀是想要提升導電的性能,通常情況下想要提升PCB板導電的性能,都是會採用含銀的錫膏。1.含銀的無鉛錫膏導電性能更佳。
  • 無鉛焊接溫度比有鉛焊接溫度高嗎
    無鉛焊接溫度比有鉛焊接溫度高34℃。在SMT焊接過程中,焊接溫度遠遠高於PCB基板的Tg,無鉛焊接溫度比有鉛高,更容易PCB的熱變形,冷卻時損壞元器件。應適當選擇Tg較高的基PCB材料。   無鉛工藝要求PCB耐熱性好,較高的玻璃化轉變溫度Tg,低熱膨脹係數,低成本。要考慮高溫對元器件封裝的影響。
  • SMT貼片加工的焊點失效等注意事項
    在PCBA加工中阻焊層的設計對於控制焊接缺陷所起到的作用是很大的,好的阻焊設計能起來好的作用,不合適的阻焊設計也會引起PCBA貼片出現一些加工中不希望看到的缺陷。下面專業PCBA工廠佩特科技給大家簡單介紹一下阻焊的設計情況。
  • 無鉛焊接如何選擇焊接溫度_無鉛焊接的一般溫度
    無鉛焊接如何選擇焊接溫度   對於無鉛焊接溫度的選擇,應該考慮到PCB板的厚度、焊盤的大小、器件以及周圍是否有較大散熱面積,常規焊點建議使用溫度選擇在350℃左右,在滿足要求的情況下烙鐵頭的大小儘可能的選大的,因為烙鐵頭越大,熱容量越大,設定溫度可以較低,熱量流失越少。
  • pcb失效分析技術
    但是由於成本以及技術的原因,PCB在生產和應用過程中出現了大量的失效問題,並因此引發了許多的質量糾紛。為了弄清楚失效的原因以便找到解決問題的辦法和分清責任,必須對所發生的失效案例進行失效分析。最後,就是根據分析過程所獲得試驗數據、事實與結論,編制失效分析報告,要求報告的事實清楚、邏輯推理嚴密、條理性強,切忌憑空想像。 分析的過程中,注意使用分析方法應該從簡單到複雜、從外到裡、從不破壞樣品再到使用破壞的基本原則。只有這樣,才可以避免丟失關鍵信息、避免引入新的人為的失效機理。
  • 北京市無鉛助焊劑_小島納米
    該器件兼容大批量,無鉛SMT焊接工藝,可直接表面安裝在PCB或傳遞模塑模塊上。集成設計僅使用一個封裝即可為條獨立線路提供非常有效和可靠的保護。該設備非常適用於電路板空間非常寶貴的情況。成ESD保護器器件專為需要ESD和浪湧保護的應用而設計。這種集成設計僅使用一個封裝即可為條獨立的線路提供非常有效和可靠的保護。電器驅動器旨在用集成的SMT部件替換到個分立元件的陣列。
  • 案例 晶片BGA封裝的焊點熱疲勞分析
    如今,可靠性在電子產品中的地位已經可以與產品的技術指標相提並論。
  • 其實,你遠比你想像中的更加堅強,你相信嗎?
    今天,給大家分享一個我身邊一個朋友的例子,希望你們看完這個故事之後,能從這個堅強的女孩身上找到些許力量。可能我們更多的是了解到一個家庭中只有父母中的一方外出打工,父母雙方都外出,家裡只有兩個孩子的我真的見得不多。但是,就是這麼巧,我竟然親眼目睹了。她是一個比我大一歲的很普通的女孩,還有一個弟弟,她弟弟應該上初中吧,自從這個女孩上初中的時候,她爸媽就已經把他們姐弟倆留在家裡,兩個人外出拼搏。這也培養了他們非常獨立的性格。
  • 邁威自動焊錫機讓焊點更可靠
    隨著微電子電路集成度的大幅度提高, 焊點的數目越來越多, 尺寸越來越小, 而一個焊點的失效就有可能造成器件整體的失效。由此可見, 電子產品組件微連接焊點可靠性已成為電子焊錫領域中的關鍵問題之一。影響焊點的因素有很多,焊料、助焊劑、溫度、焊錫工具、焊錫環境等對焊點的可靠性都有影響,自動焊錫機是焊錫的一種工具,提高焊錫效率的同時,讓焊點更可靠。
  • PCB失效了?可能是這些原因導致的
    但是由於成本以及技術的原因,PCB在生產和應用過程中出現了大量的失效問題,並因此引發了許多的質量糾紛。為了弄清楚失效的原因以便找到解決問題的辦法和分清責任,必須對所發生的失效案例進行失效分析。最後,就是根據分析過程所獲得試驗數據、事實與結論,編制失效分析報告,要求報告的事實清楚、邏輯推理嚴密、條理性強,切忌憑空想像。  分析的過程中,注意使用分析方法應該從簡單到複雜、從外到裡、從不破壞樣品再到使用破壞的基本原則。只有這樣,才可以避免丟失關鍵信息、避免引入新的人為的失效機理。
  • 宜昌回收無鉛錫條哪裡有
    宜昌回收無鉛錫條哪裡有萬鑫達廢金屬回收回收無鉛錫條,公司是一家從事再生資源回收的業務公司以誠實、 守信、 公正、價格合理的經營作風。公司以價優為基礎,公平求生存信譽作保證,萬鑫達回收公司是你-選擇。焊錫線在加工時,因為材料上有裂縫,導致拉絲油隨著裂縫滲入到錫線中,這樣也容易引發焊接時炸錫的現象。如何解決焊錫線炸錫的情況發生呢若被焊材料因天氣原因而受潮,有受潮之PCB板或PCB板上有有機氧化物時,遇高溫烙鐵也可能會產生氣體形成「炸錫」。在存放焊錫線時,要加強保管措施,防止受潮情況出現,需要控制溫度和溼度,要將焊錫線存放在乾燥的倉儲或者是作業環境中。
  • 宋芸樺在三十題不間斷快問快答中說了什麼 一句話惹眾怒
    宋芸樺在三十題不間斷快問快答中說了什麼 一句話惹眾怒時間:2018-08-03 16:12   來源:今日頭條   責任編輯:沫朵 川北在線核心提示:原標題:宋芸樺在三十題不間斷快問快答中說了什麼 一句話惹眾怒 《西虹市首富》女主角宋芸樺被扒出一段快問快答的視頻,最喜歡國家是臺灣,隨後,宋芸樺發表道歉微博,稱自己是中國人
  • SiC功率器件是怎樣進行封裝的?有什麼要點?
    由於具有較寬的帶隙,SiC器件的工作溫度可高達600℃,而Si器件的最高工作溫度局限在175℃。SiC器件的高溫工作能力降低了對系統熱預算的要求。此外,SiC器件還具有較高的熱導率、高擊穿電場強度、高飽和漂移速率、高熱穩定性和化學惰性,其擊穿電場強度比同類Si器件要高。
  • 柘榮回收無鉛錫絲哪家好
    無鉛錫條中的許多微量合金元素對錫條的物理力學性能有很大的影響:鉍可以降低錫條的熔化溫度,提高溼延性,但過量添加會降低焊料的疲勞壽命和塑性。鍶的適宜用量為0.2% ~ 1.5%。鎳通過改變合金結構和細化晶粒尺寸,可以改善焊接接頭的力學性能和疲勞壽命。在系統設計的化學成分中,可以明顯地看出,在錫條的可焊性、熔點、強度、塑性和疲勞壽命等各方面都可以達到比較好的平衡。
  • 無鉛焊錫膏
    無鉛焊錫膏是用來助焊的,作用在於隔離空氣防止氧化,另外增加毛細作用,增加潤溼性,防止虛焊等,是所有助焊劑中最良好的表面活性添加劑, 廣泛用於高精密電子元件中做中高檔環保型助焊劑。 1電子裝配對無鉛焊錫膏的要求   無鉛焊錫膏液相溫度應低於回流焊溫度250℃。
  • 元器件失效機理有哪些?
    溫度變化對半導體器件的影響:構成雙極型半導體器件的基本單元P-N結對溫度的變化很敏感,當P-N結反向偏置時,由少數載流子形成的反向漏電流受溫度的變化影響,其關係為: 3、溼度導致失效 溼度過高,當含有酸鹼性的灰塵落到電路板上時,將腐蝕元器件的焊點與接線處,造成焊點脫落,接頭斷裂。溼度過高也是引起漏電耦合的主要原因。而溼度過低又容易產生靜電,所以環境的溼度應控制在合理的水平。
  • 特斯拉降價後惹眾怒,官方給兩種補償方案,消費者究竟該選哪個?
    在前兩天,特斯拉旗下的車型普遍大幅度降價,Model X P100D由原來的118.93萬直接減少了34.11萬元,是所有車型中降幅最大的,降價之後只需84.82萬元就可以買到,還有Model S P100D也降至了百萬元以內,降價幅度達27.75萬元,只需81.36萬就可以買到。