小升初考試複習――空間與幾何(立體圖形)

2020-12-07 聊聊人生一起嗨

今天一起來概括複習立體圖形的相關知識,先一起回顧我們學過的立體圖形。之前,我們已經學過了長方體,正方體,圓柱和圓錐。那他們都有哪些特點呢?

長方體的特點:8個頂點,12條稜,6個面。相對的稜長度相等,並且這12條稜可分為長、寬、高 這樣的4組。相對的面完全相同,一般都是長方形(特殊情況有一組對面為正方形)。

正方體的特點:8個頂點,12條稜,6個面。6個面完全相同,6個面都為正方形,12條稜長度相等。

圓柱的特點:兩個底面(都是圓形,面積相同),一個曲面,無數條高。

圓錐的特點:一個底面(圓形),一個曲面,一條高。

下面我們一起總結立體圖形的表面積和體積公式。我們從最基本圖形長方體開始,通過上面的複習我們知道長方體有六個面,相對的面完全相同,六個面為長方形。上、下底面的面積=長×寬×2,前、後面的面積=長×高×2,左、右的面積=寬×高×2。長方體的表面積=(a×b+a×h+b×h)×2。推導長方體體積公式我們是通過數小正方體得到長方體的體積公式得,所以長方體體積=長×寬×高。運用體積公式時,要注意公式變形。高=體積÷長÷寬,同樣道理可以去求長,寬。

正方體的六個面都是正方形,並且完全相同。正方體的表面積=6×稜長×稜長。正方體是特殊的長方體,所以正方體的體積=稜長×稜長×稜長。

圓柱的展開圖是兩個圓和一個長方形(側面展開圖),那圓柱的表面積=兩個底面+側面積。分布求解,先求側面積,要求底面積,最後相加。

在推導圓柱的體積公式時,我們把圓柱轉化成了長方體。圓柱的底面積=長方體的底面積,圓柱的高=長方體的高。圓柱的體積=底面積×高。(V=兀rh)依然要注意公式變形的運用。

上述三個圖形的體積我們都可以用一個公式來求體積,體積=底面積×高。要注意的是長方體的底面積=長×寬。

推導圓錐的體積公式時我們是通過實驗的方法,實際上也就是把圓錐轉化成了圓柱。等底等高的圓柱體積是圓錐體積的3倍。圓錐體積=1/3底面積×高。要靈活運用公式變形求高,求底面積。 通過一個表格一起再概括一下立體圖形的表面積和體積。

立體圖形的表面積和體積的出題經常和生活中的例子相結合。在運用時一定要審好題,運用好公式。

立體圖形表面積和體積

好好學習,不負青春!!!

相關焦點

  • 小升初數學幾何圖形常考題之風箏模型的解題套路
    風箏模型是小升初數學幾何圖形部分的常考題對沒有進行過專項訓練的同學來說,這道題有一定難度。今天,餘老師就把風箏模型這種小升初數學常考題給大家講解一下,其實這種題的套路非常明顯。小升初數學考試中的幾何圖形部分有幾個重要模型:等高模型、鳥頭模型、風箏模型、燕尾定理和相似三角形模型這5個模型。其中等高模型和風箏模型可能是小升初數學最常考題。為什麼小升初數學常考風箏模型呢?主要是風箏模型涉及到的比例計算正好和六年級的比例部分相對應,並且屬於奧數中比較簡單的內容,難度適中,非常適合小升初考試。
  • 小升初數學幾何圖形:三角形分割後求陰影部分面積的套路
    小升初數學所考的幾何圖形問題,越來越有難度,不少題目都已經達到初中的難度。幾何圖形題給人的感覺是千變萬化,但也有套路。只不過這種套路不那麼明顯,沒有直接的公式。常見的幾種幾何圖形問題也就是三角形分割求陰影部分面積,四邊形分割求陰影部分面積,圓和三角形以及四邊形組合求陰影部分面積,立體幾何求體積或表面積問題,以及勾股定理應用這5種類型。當然,有時可能會組合出其它的問題。但我們只要熟練5種常見類型,一般的小升初幾何圖形題是能夠解決的。重慶餘老師公眾號把這幾種類型都分別進行介紹,幫助家長們輔導孩子。
  • 行測之平面圖形推理——空間圖形推理
    空間圖形推理是每年行測考試的必考點,其難度較大,對考生的空間想像能力要求較高。空間推理主要包括空間摺疊、立體拼接和切割、立體截面、三視圖四種類型,兩天複習下來,私認為空間摺疊是難度最大也最容易出錯的。空間摺疊圖形空間摺疊題型是給出平面展開圖,推出立體圖。
  • 教師資格證小學數學圖形與幾何授課思路探討
    圖形與幾何部分是小學數學學科知識的重要組成部分。新課標中圖形與幾何內容結構以「立體-平面-立體」為主線,以「圖形的認識、測量、圖形與位置、圖形與變換」四條線索展開,遵循學生的認知特點,各學段逐層推進。圖形與幾何部分在教師資格證面試考試中考察的佔有相當大的比率,考生熟練掌握這部分知識的授課思路對於能否通過考試至關重要,為了幫助廣大考生順利通過考試,華圖教師團隊在這一塊做了專門研究。
  • 小升初分班考試立體幾何題,求模具的體積,方法:正方體減去圓錐
    這是某著名重點一中小升初入學分班考試數學題第17題。該題是一道立體幾何題,滿分是7分。題目要求計算模具的體積。如下圖所示:小升初入學分班考試數學題立體幾何題在小學階段,都是很簡單的,也是小升初考試中必考題型。
  • 高考數學全國二卷,解析幾何與立體幾何哪個更難?
    全國二卷解析幾何大題的位置改到了立體幾何前面,這是繼09年新課改之後的第一次變化。2019年是否延續上一年的變化?我們還不得而知。一直以來解析幾何作為壓軸大題。得分率都是非常低的。而如果在今年2019年像2018年一樣,仍然將解析幾何放在立體幾何之前。那是不是就可以說解析幾何作為壓軸大題的可能性不大了。如果立體幾何的難度也不大的話,那麼導數成了唯一一個壓軸大題了。
  • 《立體圖形與平面圖形》說課設計
    二、說教學目標 基於以上認識,我將本節課的三維教學目標確定如下:知識與技能:通過觀察生活中的大量圖片或實物,體驗、感受、認識生活中以實物為原型的幾何圖形,認識一些簡單幾何體的基本特徵,能識別這些幾何體。過程與方法:從具體實務中抽象出幾何圖形,並用幾何圖形描述一些現實中的物體形狀,進一步豐富學生對幾何圖形的感性認識。
  • 小升初數學題型及考點分析
    鄭州小升初中數學往往佔了差不多一半的分值,所以在鄭州,備戰小升初絕大部分的工作就是要備考數學。那麼數學中都有哪些題型呢?每種題型都有哪些考點?只有把考試題型爛熟於心,知道考點所在,才能更好地去複習小升初數學,從而備戰好小升初考試。
  • 圖形中蘊含世界之美——複習一波幾何數學吧
    想必各位經歷過中高考數學的玩家曾經為這部分解題掉下過幾許頭髮,但其實,那些奇異的圖形變化蘊藏著非同一般的規律。平面投影成立體圖形,而幾何學投影著世界之美。像彭羅斯三角形、彭羅斯階梯等「不可能圖形」,利用人類視覺系統對二維圖形的三維投射形成的認知錯誤,製造理論上不可能存在的空間路徑。
  • 對幾何圖形的拓展認知,可以提高小學生的觀察力和空間想像力
    在小學數學中,小學生對幾何圖形的認知僅限於那麼簡單的幾種,而且其中平面圖形較多,這大大的限制了小學生觀察能力和空間想像思維的發展,造成了對圖形認識不清,認知單一,立體感和空間感薄弱的思維缺陷。從形形色色的物體外形中抽象出的各種圖形統稱為幾何圖形。如:在觀察和辨識過程中,應著重於讓小學生們探索它們的形狀、大小和位置關係。最主要的是能從含虛線的圖形中感知到立體的存在,從而增強他們的立體感,使他們能夠明確區分立體圖形和平面圖形。
  • 2019年甘肅事業單位職測考試備考技巧:立體圖形的周長與面積公式
    2019年甘肅事業單位職測考試備考技巧:立體圖形的周長與面積公式 2019年甘肅事業單位招聘考試正處於緊張的備考階段,為了幫助各位考生比較好的備戰事業單位考試,甘肅中公教育為大家準備了事業單位職測考試答題技巧
  • 初一數學幾何圖形30道精選題,做完期末考試穩拿第一(附答案)
    初一數學幾何圖形的主要內容是圖形的初步認識,從生活周圍熟悉的物體入手,對物體的形狀的認識從感性逐步上升到抽象的幾何圖形。通過從不同方向看立體圖形和展開立體圖形,初步認識立體圖形與平面圖形的聯繫。在此基礎上,認識一些簡單的平面圖形——直線、射線、線段和角。
  • 2021年中考數學幾何知識點:幾何圖形初步概念
    中考網整理了關於2021年中考數學幾何知識點:幾何圖形初步概念,希望對同學們有所幫助,僅供參考。   知識點、概念總結   1.幾何圖形:點、線、面、體這些可幫助人們有效的刻畫錯綜複雜的世界,它們都稱為幾何圖形。從實物中抽象出的各種圖形統稱為幾何圖形。有些幾何圖形的各部分不在同一平面內,叫做立體圖形。
  • 2020初三數學複習:記住一張表解決所有確定幾何圖形的三視圖問題
    熟悉一張轉化表,可以順利地完成幾何圖形的三視圖轉化問題。在初中有一個知識板塊,講的是確定幾何圖形的三種視圖。這個單元有很多容易出錯的地方,主要是學生容易混淆主視圖、左視圖或俯視圖。為了研究的方便,數學中規定:主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形,特別要注意三視圖均是平面圖形。也就是說,通過三視圖可以把立體圖形轉化成平面圖形。那麼在學習的過程中,我們應該如何才能比較準確地把握本單元的知識要點呢?一是要注意交匯點在三視圖中形成的點,二是要注意看不到的稜在三視圖中要用虛線表示也容易忽視。
  • 一年級數學下冊圖形與幾何專項複習卷,出題靈活,附答案
    這個學期,圖形與幾何部分,難度開始上升。那麼,在總複習中,一年級小學生,如何做好圖形與幾何的複習呢?需要注意些什麼呢?重點要掌握哪些知識和技能呢?以一份專項測評卷為例,來談一談吧!一年級下冊,圖形與幾何部分,需要掌握5種平面圖形:長方形、正方形、三角形、圓、平行四邊形。
  • 小學幾何基礎:認識圖形,了解圖形!
    尤其是在高中階段,計算能力、分析能力和幾何空間能力更是對學生全面的考察,所以幾何圖形的認識以及幾何圖形的基礎,就是我們所必須要掌握的能力。今天我們就開始學習幾何,從最基礎的認識圖形開始,當然老師在之前的視頻中也給大家講解了,嗯,正方體展開圖的11種畫法,以及將房體展開圖找對立面的方式,那麼今天我們首先來認識幾何圖形,再來說一說,正方體展開圖的11種方式,以及找對立面的規律。
  • 長沙小升初數學畢業考總複習之式與方程
    長沙小升初學生即將引來小學六年的畢業考試。長沙奧數網徐麗老師針對小學數學知識體系中的式與方程進行系統歸納,同時配備相應的鞏固練習,希望能幫助到各位家長,讓您的孩子在小學畢業考試中大戰全勝!   知識點複習   一、用字母表示數   1、用字母表示數的意義和作用   用字母表示數,可以把數量關係簡明的表達出來,也可以表示運算的結果。
  • 2020高考數學重難點突破:立體幾何與空間向量,教研二輪複習推薦
    今天給大家帶來的是「備戰2020高考數學」優質內容:立體幾何與空間向量。通過研究高考考綱,結合同學們的失分點,整理出了這份備考資料,希望能夠幫大家解決一些疑難點。請大家繼續往下閱讀正文。8.平面向量加法的平行四邊形法則向空間的推廣始點相同且不在同一個平面內的三個向量之和,等於以這三個向量為稜的平行六面體的、以公共始點為始點的對角線所表示的向量.
  • 小升初英語專項提升(精練),題型全面,備戰小升初考試必練!
    小升初英語專項提升(精練),題型全面,備戰小升初考試必練!最近很多面臨小升初的家長朋友們,都有留言問我,老師有沒有小升初備考的複習資料,孩子還有一學期就要小升初考試了,可各科準備都不是特別充分,尤其是英語學科,根本不知道該從哪裡入手準備。
  • 小學數學中關於幾何圖形的常識性概念
    一、幾何圖形的概念一個點是不是圖形?一條線段是不是圖形?回答是肯定的,也就是說從形形色色的物體外形中抽象出來的各種圖形統稱為幾何圖形。二、幾何圖形的分類與辨別幾何圖形分為立體圖形和平面圖形兩大類,其定義分別為:立體圖形:各部分不都在同一個平面之內的幾何圖形,比如圓柱、圓錐、圓臺、稜柱、稜錐、稜台、球體、正方體、長方體……平面圖形:各個部分都在同一個平面內的幾何圖形,比如線段