由量子力學的波粒二象性看人身體與靈魂的二元性

2020-11-12 高山疏水

經典力學把波粒二象性被明確加以區分,把粒子分為我們常說的物質,把波動分為我們常說的光波。

這種把波粒截然分開的做法,導致了科學與宗教、唯物與唯心的長期對立,導致人類對好多超自然現象無法解釋,甚至斷然否定。

與傳統經典力學不同,量子力學研究發現,波粒子和光粒子不僅存在於同一場景,而且有時表為粒子,有時表現為光波,波粒相互依存,相互轉化。用這一發現研究人死後其身體與靈魂的關係不難看岀,身體(物質)是粒子,靈魂(意識)是光波動。

科學研究發現,正如粒子的資料儲存在波的形態上一樣,人的大腦是有形的磁碟片,可以儲存我們活著時所經歷的各種信息,當人死後,這些信息不會死去,會永遠存在,會傳到量子(精神)領域。

按這樣的邏輯,當人身體(物理碟片)消失後,人的意識及儲存於大腦的信息,就會以粒子形態轉化為光波形態,仍然存在。當下一個輪迴轉世時,波又轉化為粒(物質)形態。

這就是說,當人身體死亡,靈魂依然存在量子精神領域。

這就是說,在我們已知的現實物質世界外,還存在一個與我們現實世界平行的一個未知世界,只是由於我們科技發展水平受限,我們不能看到這個世界。

相關焦點

  • 當代量子力學:最好少提「波粒二象性」
    在上篇文章裡,我們討論到,量子就是量子,不是所想像的是「波」是「粒」那樣簡單,波粒二象性並不代表量子的全部。這個觀點,確實對於經典量子力學來講,是一個難以接受的觀點。所以,上篇文章得到一些反對的意見。為此,寫這篇文章,算是對於是上篇文章意見與評論的統一答覆,作為上一篇文章的續篇。
  • 五分鐘量子力學、(二)光的波粒二象性
    今天小編帶著各位小夥伴一起來學習一下五分鐘量子力學的第二章光的波粒二象性。我們今天不去探討波粒二象性帶來的哲學問題,這玩意一旦談起來不光是沒頭沒腦,更重要的是科學和神學各說各話無法得出爭論的結果,以後我會在專門的文章裡來跟大家探討。
  • 從波粒二象性到量子力學
    對於光波究竟是波動還是粒子爭論了很多年,雙縫幹涉實驗證明了光是一種波,而光電效應實驗則證明了光是一種粒子,從而產生了光的波粒二象性原理。最後由德布羅意提出物質波理論,認為所有的物質都是波,當物體的動量乘以波長小於普朗克常量的時候就會表現出波動特性。量子理論起源於普朗克的猜想,目的是為了解決無限能量困境。
  • 什麼是波粒二象性?
    光具有波粒二象性,一定程度上是波,一定程度上是粒子。你可能對這個答案非常不滿意,但其實這就是答案!波粒二象性不是波粒「雙標」,可不是我想什麼時候把它當作波(粒子)就什麼時候把它當作波(粒子)。有一套確定的物理規則,告訴我們在什麼時候光看起來像經典的波,什麼時候看起來像經典的粒子。
  • 五分鐘量子力學(四),量子史話:微觀粒子的波粒二象性
    1924年,在光具有波粒二象性的啟發下,法國物理學家德布羅意(1892~1987)提出一個假說,指出波粒二象性不只是光子才有,一切微觀粒子,包括電子和質子、中子,都有波粒二象性。1927年Davsso和Germer首次實驗驗證了 De Broglie 關於微觀粒子具有波粒二象性的理論假說,奠定了現代量子物理學的實驗基礎。本實驗主要用於多晶體的電子衍射現象,測量運動電子的波長;驗證德布羅意關係。在這個實驗中,戴維孫和革末把電子注正入射到鎳單晶上,觀察散射電子束的強度和散射角之間的關係。
  • 用最簡單的語言解釋「波粒二象性」,量子力學其實並不神秘!
    量子力學是物理中的神學,上帝究竟是依靠大量的擲骰子來制定了人世準則,還是早就制定好了一切的宿命呢?想要了解量子力學就要知道三個最關鍵也是入門的概念,「雙縫實驗」「薛丁格的貓」「波粒二象性」,今天我們就來討論一下「波粒二象性」,用通俗簡單的語言給大家解釋下為什麼都說量子力學是物理學中最不確定的因素呢傳統物理和量子物理之間最大的分歧就是「確定」「不確定」,愛因斯坦不相信一切事情的規律都是按照概率來發生,這似乎改變我們對傳統科學的認知,讓物理變得不再嚴謹,「波粒二象性
  • 清華大學在實驗中證明了宏觀物體的波粒二象性
    清華大學研究人員在實驗中首次觀察到了液態金屬流體宏觀體系中的波粒二象性,為藉助金屬流體行為認識量子世界乃至更多物理體系開啟了一條全新的途徑。然而,很多人也對玻爾的理論持懷疑態度,其中不乏物理和量子力學權威和大家。例如,愛因斯坦就曾以「上帝不會擲骰子」的觀點來反駁玻爾。2005年法國科學家伊夫·庫代(Yves Couder)的團隊用矽油實現了波粒二象性的實體化,這一發現引發了人們對導航波理論以及量子世界本質的重新思考。
  • 作為量子力學的基石,光的波粒二象性簡單又神秘
    前面的講光電效應和楊氏雙縫幹涉實驗分別證明了光的粒子性和光的波動性。在無休止的爭論中,開天闢地一聲響,普朗克針對黑體輻射提出了光量子理論,然後量子力學橫空出現,為我們打開了新的世界。量子力學的gong'che今天就和大家分享分享光的波粒二象性,歷史上科學家一直在爭論光到底是一種波還是一種粒子,
  • 量子力學竟然揭示靈魂奧秘?人體腐朽後靈魂究竟去了哪裡?
    根據不完全統計,很多人都有靈魂離體的體驗,尤以瀕臨死者後又恢復者居多。很多人稱他們靈魂離體後可以看到自己的家人,更有甚者稱他們進入了一個難以描述的光怪世界。自古以來,儒釋道等教派都在宣傳靈魂之重要,那麼靈魂究竟是什麼呢?我們還沒有一個準確的答案。
  • 科學家首次「看」到了光的波粒二象性
    愛因斯坦提出光是由稱為「光子」的粒子組成,藉此解釋了光電效應。他也因此獲得了諾貝爾物理學獎。光電效應的發現對物理學影響深遠,並為後來量子力學的發展作出了重大貢獻。量子力學在對微小粒子,如原子和光子的行為預測上,具有驚人的準確性,然而,這些預測非常違反直覺。比如,量子理論認為類似光子的粒子可以同時在不同的地方出現,甚至是同時在無窮多的地方出現,就像波的行為一樣。
  • 波粒二象性:無法像理解宏觀規律的那樣直觀的「理解」波粒二象性!
    波粒二象性並不是比較本質的描述,所以被即有粒子的性質又有波的性質這種迷惑是很正常的的事。倒不如說波粒二不像性,這樣至少能明白即不是經典意義上的波也不是經典意義上的粒子。比如你有一個電子,在你不做任何觀測的時候它是一個波函數,按照薛丁格方程快樂地演化。當你測量它的位置的時候,這個過程差不多是這樣的:你:「波函數啊波函數,請告訴我你的位置吧!」
  • 靈、氣、勢,參悟生命的「波粒二象性」
    以相對論、量子力學及其他前沿科學理論解釋佛法道機,似乎在成為潮流。然就算真摸到了交融處,也通通只看到了一半。如果覺得波粒二象性難解,那就回到自己的精神——人的精神,其實就是波粒二象性的絕佳典範——我們的那些起心動念作意,通通是以「念頭」以及念頭的鋪展和連續來呈現的,念頭是什麼?正是「粒子」,一顆顆不正像粒子一樣麼?那麼什麼是「波」?
  • 改「波粒二象性」為「波粒一象性」
    Dirac三偏振片實驗的經典波和經典粒子的解釋都是錯的,只有明明是粒子但是數學用的波的量子解釋才是對的。當然,也有人就簡單放過了這個問題,說,這就是光的「波粒二象性」:你看,有的時候像粒子(展示光電效應的時候),有的時候像波(幹涉效應的時候)。
  • 《自然數波粒二象性與世界泛波粒二象性存在》論文4泛存
    二、世界泛波粒二象性存在(一)、非生命世界泛波粒二象性存在物理上很長時間一直對光的存在狀態,是粒子還是波的形態,發生著爭論。持粒子態證據是光的反射,符合彈性小球碰撞規律;持波的形態證據是,光能夠發生幹涉。
  • 光的波粒二象性
    比如量子理論認為類似光子的粒子可以同時在不同的地方出現,甚至是同時在無窮多的地方出現,就像波的行為一樣。這種被稱為「波粒二像性」的概念,也適用於所有亞原子粒子,如電子、夸克甚至希格斯玻色子等。波粒二象性是量子力學理論的基礎,諾貝爾獎獲得者理察•費曼「量子力學中一個真正的奧秘」。
  • 量子力學解釋靈魂轉世,恐怖的量子力學顛覆人類世界觀
    據說量子力學解釋靈魂轉世是真的嗎?下面小編就來為大家說說吧!    靈魂是人類探討的永恆話題,人們在乎生前的世界,同樣也好奇自己死後是否會有一個靈魂繼續下一段歷程。然而死亡是一種非常個體化的體驗,「如魚飲水,冷暖自知「,死後即使靈魂不滅,死者也無法再藉口言說,把自己的體驗告訴給活看的人,而活看的人,又如何可能用感官接收到?
  • 波粒二象性
    本號一直專注做高中物理知識的相關知識,歡迎大家轉發到朋友圈、微信群,分享您的知識一、光的波粒二象性
  • 物質是由原子構成的,並且具有波粒二象性
    光是具有波粒二象性的。然而,如果有人告訴你,不僅光具有波粒二象性,電子、原子、和它們組成我們的物質也都具有波粒二象性,你會不會感到背脊發涼?我們的身體難道也是一種波?真是鄙夷所思!物質具有波粒二象性,這不是科學家們的憑空臆想,而是通過無數次的科學推理和實驗去證明得出的結論。這是一個跌宕起伏的過程......
  • 迄今最宏觀波粒二象性觀察實驗獲得成功
    量子力學的核心概念之一,就是波粒二象性,所有對象都可以被看作同時具備波的特質及粒子的特質。而據日前發表在arXiv預印本網站上的一篇論文稱,維也納大學的物理學家們完成了迄今最宏觀的波粒二象性觀察實驗,打破了波粒二象性的分子大小原有紀錄——這個巨大分子包含超過800個原子,由大約5000個質子、5000個中子和5000個電子構成。
  • 《黃帝內經》中關于波粒二象性的描述
    首先,我們要大概知道物理學上關于波粒二象性的概念是什麼樣子的,波粒二象性(wave-particle duality)指的是所有的粒子或量子不僅可以部分地以粒子的術語來描述,也可以部分地用波的術語來描述。