生物柴油(Biodiesel),又稱為生質柴油,是指使用植物油(如菜籽油、大豆油、花生油、玉米油、棉籽油等)、動物油(如魚油、豬油、牛油、羊油等)、廢棄油脂或微生物油脂與甲醇或乙醇經酯轉化而形成的脂肪酸甲酯或乙酯。
Biodiesel is a domestically produced, renewable fuel that can be manufactured from
vegetable oils,
animal fats, or
recycled restaurant grease for use in diesel vehicles or any equipment that operates on diesel fuel.
Biodiesel's physical properties are similar to those of
petroleum diesel. It's safe, biodegradable, and produces less air pollutants than petroleum-based diesel.
Biodiesel can be used in its pure form (B100) or blended with petroleum diesel. Common blends include B2 (2% biodiesel), B5, and B20. Most automakers approve blends up to B5. Some approve blends up to B20. Check with your owner’s manual or automaker to determine the right blend for your vehicle. Using the wrong blend could damage your engine and/or void the manufacturer's warranty.
Biodiesel and renewable diesel are biomass-based biofuelsBiomass-based diesel fuels used as petroleum distillate fuel oil (diesel fuel and heating oil) include biodiesel and renewable diesel. They are both called biomass-based diesel fuels because they are mostly produced for use in diesel engines, but they can also be used as heating fuels. Both fuels are made from biomass or materials derived from biomass, but they differ in how they are produced and in their physical properties. Biodiesel meets the American Society for Testing and Materials (ASTM) specification ASTM D6751 and is approved for blending with petroleum distillate/diesel. Renewable diesel meets ASTM D975 specification for petroleum diesel, and it does not require blending with petroleum diesel for its use. Both fuels qualify for meeting the biofuels consumption levels required by the U.S. Renewable Fuel Standard Program.
Biodiesel is produced through transesterificationBiodiesel is produced through transesterification—a chemical process that converts fats and oils into fatty acid methyl esters (FAME). Approximately 100 pounds of oil or fat are reacted with 10 pounds of a short-chain alcohol (usually methanol) in the presence of a catalyst (usually sodium hydroxide or potassium hydroxide) to form 100 pounds of biodiesel and 10 pounds of glycerin (or glycerol). Glycerin is a sugar commonly used in the manufacture of pharmaceuticals and cosmetics.
Biodiesel is made from a variety of materialsBiodiesel can be made from nearly any feedstock (raw material) that contains adequate free fatty acids. Most of U.S. biodiesel production uses raw vegetable oils, used cooking oils, yellow grease, and animal fats as feedstocks for transesterification. Vegetable oils are the main feedstocks for U.S. biodiesel production. Other feedstocks for biodiesel production include waste animal fats from processing plants and used/recycled cooking oil and yellow grease from restaurants.
Biodiesel is mostly used as an additive to petroleum dieselBiodiesel is most often added to (blended) with petroleum distillate/diesel in ratios of 2% (referred to as B2), 5% (B5), or 20% (B20). It is called biodiesel because it is mostly used in diesel engines. Pure biodiesel (B100) can also be used in many applications. Petroleum diesel fuel tanks and equipment can also store and transport biodiesel. Learn more about use of biodiesel made from different feedstocks. Biodiesel blends may also be used as heating oil.
Before petroleum diesel fuel became popular, Rudolf Diesel, the inventor of the diesel engine in 1897, experimented with using vegetable oil (biodiesel) as fuel. Until 2001, the United States consumed only small amounts of biodiesel. Since then, U.S. biodiesel production and consumption have increased substantially, largely because of the availability of various government incentives and requirements to produce, sell, and use biodiesel including the Renewable Fuel Standard Program.In 2019, the United States produced about 41 million barrels (1.7 billion gallons) of B100, imported about 4 million barrels (168 million gallons), exported about 2.7 million barrels (114 million gallons), and consumed about 43 million barrels (1.8 billion gallons) nearly all as blends with petroleum diesel.
Biofuels are transportation fuels such as ethanol and biomass-based diesel fuel that are made from biomass materials. These fuels are usually blended with petroleum fuels (gasoline and distillate/diesel fuel and heating oil), but they can also be used on their own. Using ethanol or biodiesel reduces the consumption of gasoline and diesel fuel made from crude oil, which can reduce the amount of crude oil imported from other countries. Ethanol and biodiesel are also cleaner-burning fuels than pure gasoline and diesel fuel.
Rapeseed oil, sunflower oil, and palm oil are major feedstocks for biodiesel production in other countries. Algae is also a potential source for biodiesel production. Algae contain fat pockets that help keep them afloat. This fat can be collected and processed into biodiesel.
生物柴油是利用植物油(如菜籽油、大豆油等)、動物油、廢棄油脂(如地溝油等)或微生物油脂與甲醇或乙醇經過酯轉化而形成的脂肪酸甲酯或乙酯,是一種可再生的清潔能源。
100磅植物油或動物油等(Oil)+ 10磅甲醇/乙醇
→ 100磅生物柴油(biodiesel)+ 10磅甘油(glycerin)
生物柴油的優點:
可再生,具有優異的環保性能;
有較好的低溫發動機啟動性能、潤滑性能,可降低噴油泵、發動機缸和連杆的磨損率,延長其使用壽命;
運輸及儲存安全;按一定比例與石化柴油調和使用時,可降低油耗、提高動力性,並降低尾氣汙染。
1.
生物液體燃料:生物柴油及燃料乙醇都是生物液體燃料,都屬於生物質燃料;生物液體燃料,是指利用生物質資源生產的甲醇、乙醇和生物柴油等液體燃料(《中華人民共和國可再生能源法》)。注意,這個解釋的文字表達與2006版的《成品油市場管理辦法》關於成品油的表述對比一下是很有意思的,「辦法所稱成品油是指汽油、煤油、柴油及其他符合國家產品質量標準、具有相同用途的乙醇汽油和生物柴油等替代燃料」。可以看出,兩個文件前者表達是準確的,乙醇、生物柴油是生物液體燃料,而後者有點小問題,那就是乙醇汽油≠乙醇,而生物柴油=生物柴油,乙醇汽油=E10(10%乙醇汽油),實際上生物柴油一般是指BD100,而管理辦法說的應該是類似於乙醇汽油(E10)的BX(比如B5)的生物柴油調和燃料,所以這個文件造成了我國生物柴油十幾年以來一直糾結於是不是成品油的問題,甚至還出現了2008—2009年對生物柴油徵收消費稅的問題;還有一種容易被大家忽略,那就是媒體曾經宣傳過的「生物航煤」,我們之所以要特殊提起生物航煤,是因為生物航煤屬於航空噴氣燃料,既不是汽油也不是柴油,因此我們可以確定的是:
生物液體燃料包括
生物汽油(燃料乙醇、生物丁醇)、
生物柴油(酯基、烴基、費託生物柴油)及
生物航煤(HEFA—SPK)。
2.
生物柴油新定義:根據生物液體燃料的概念,我覺得我們現在應該將其分為「
生物汽油」、「
生物柴油」及「
生物航煤」比較合適,這樣一來,乙醇、脂肪酸甲酯則只是生物汽油和生物柴油的一種產品而已,理順了概念歸屬;但同時我們需要注意的是「生物汽油」是之前沒有出現過的名詞,而「生物柴油」則不僅僅代表脂肪酸甲酯,而是成為了一個內涵、外延大於脂肪酸甲酯的名詞。也是根據這個思路,我國生物柴油行業專家在NB/T 13011—2017 生物柴油工業名詞術語中將生物柴油分為「
酯基生物柴油、
烴基生物柴油及
費託生物柴油」三種,只是當時制定這個標準時還沒有意識到需要對「
大生物柴油」概念重新界定。如今,我覺得上述定義分類並沒有錯,我們只需要增加一個重新定義的「生物柴油」概念即可理順,新的定義我建議是這樣的:
生物柴油(
biodiesel)是指以生物質為原料經過化學反應得到的適合於柴油發動機或加熱取暖用液體燃料。
3. 關於「一代、二代生物燃料」概念定義:2020年初以來,國內「一代生物柴油」、「二代生物柴油」成為熱門名詞,「
二代生物柴油」取代「
一代生物柴油」的觀點非常流行,不過這裡所說的「
二代生物柴油」實質上是烴基生物柴油(NB/T 13011—2017),國外稱其為「HVO」(
Hydrotreated Vegetable Oil)、「
Renewable Diesel」,而這個「二代生物柴油」取代「一代生物柴油」的重要論據之一就是歐盟計劃在今後幾年提高「二代生物柴油」摻混比例;但是我們需要注意的是,歐盟所說的「二代生物柴油」並不是烴基生物柴油,實質上說的是「
二代生物燃料」(
Second generation biofuel),其嚴格的定義是「Second generation biofuels are made either from non-food energy crops, inedible waste of energy crops (e.g. straw), wood, or from organic waste materials like
Used Cooking Oils (UCO). They have the advantage of not affecting the human food chain.
第二代生物燃料由非糧食能源作物、不可食用的能源作物廢料(例如:稻草),木材,或有機廢物材料,如舊烹飪油(UCO),它們的優點是不影響人類食物鏈」。對於生物柴油來說,以各種廢棄油脂生產的就是二代生物柴油。現階段我國一些企業生產的加氫生物柴油(HVO),即烴基生物柴油毫無疑問是屬於生物柴油,歐盟對其認證的減排係數與酯基生物柴油(FAME)基本是一致的,應該享受國家相關優惠政策。
我們需要明確回答兩個問題,其一生物柴油是不是成品油,其二生物柴油生產企業是不是成品油經營企業。1. 生物柴油是不是成品油:國民經濟行業分類注釋(GB/T 4754-2011)將生物柴油歸入石油加工、煉焦和核燃料加工業(25類)其中的精鍊石油產品製造(251子類)之下的人造原油製造(子類2512),其中的生物燃油(包括):生物柴油,秸稈制燃油,廢物、廢料制燃油,林木生物制燃油,其他生物燃油。
生物柴油根本屬性是「
生物」來源,與(石油)柴油的根本區別在於生物柴油是可再生,而(石油)
柴油是不可再生,其中第一代生物柴油是由大豆、棕櫚油、甘蔗和油菜籽等糧食作物製成的,第二代生物柴油由非糧食能源作物、不可食用的如舊烹飪油(UCO)、酸化油製成的,前者屬於「
可再生」而後者兼具「
可再生」和「
資源綜合利用」二個特點。
儘管生物柴油、石油柴油都是「柴油」(柴油機液體燃料),都有能源屬性,都應該納入成品油管理範圍;但是生物柴油由於是
可再生能源而石油柴油不是可再生能源,因此前者是鼓勵發展後者屬於限制發展,這樣二者雖然在技術、工藝、生產、儲存、運輸、使用實際應用方面具有更多相同屬性但卻執行不同的稅收政策,我們也就能夠釐清各級政府多年來迷惑的地方,經常面對一些矛盾,最典型的就是當初按照2006年開始執行的《成品油市場管理辦法》將生物柴油納入成品油範圍而對生物柴油徵收消費稅的做法。
2.生物柴油企業是不是成品油生產企業:雖然生物柴油產品應該納入成品油市場,這樣便於生物柴油的推廣應用,但是生物柴油企業卻不應該納入成品油企業,因為其生產技術、設備尤其是原料來源及生產規模與石油柴油差別很大,因此應該另行歸類,比如按照上述GB/T 4754-2011標準歸入「
人造原油」,該標準經過修訂,新版GB/T 4754-2017國民經濟行業分類將生物柴油納入C類製造業、25大類石油、煤炭及其他燃料加工業、254中類生物質燃料加工、小類2541生物質液體燃料生產,詳細解釋是:指利用農作物秸稈和農業加工剩餘物、薪材及林業加工剩餘物、禽畜糞便、工業有機廢水和廢渣、城市生活垃圾和能源植物等生物質資源作為原料轉化為液體燃料的活動;而成品汽油柴油則是納入C類製造業、25大類石油、煤炭及其他燃料加工業、251中類、2511小類 原油加工及石油製品製造,詳細的解釋是:指從天然原油、人造原油中提煉液態或氣態燃料以及石油製品的生產活動;很明顯,生物柴油企業不屬於成品油生產企業,所以不能照搬成品油生產企業管理辦法,但是生物柴油企業屬於石油化工類,應該遵循相關的安全環保政策法規。
根據已有的文獻資料及未來發展預測,我們得出如下結論:1. 「
生物柴油」是由瀋陽農業大學萬仁新先生於
1988年首先使用的;2.
奧地利是第一個正式使用生物柴油——FAME的國家,1990年5月就已經在一些加油站使用生物柴油;3.由於技術進步,建議對已有生物柴油概念進行重新定義,個人的建議重新定義為:
生物柴油(biodiesel)是指以生物質為原料經過化學反應得到的適合於柴油發動機或加熱取暖用液體燃料;4.
生物液體燃料包括
生物汽油(燃料乙醇、生物丁醇)、
生物柴油(酯基、烴基、費託合成生物柴油)及
生物航煤;5.(加氫)烴基生物柴油不應該稱為二代生物柴油,歐盟的「二代生物燃料」是指以廢棄物為原料生產的生物燃料;但是我國的烴基生物柴油應該享受酯基生物柴油相同的稅收優惠政策;6. 生物柴油屬於成品油,但是執行著全新的稅收政策;同時
生物柴油生產企業不是成品油生產企業,不應該按照成品油生產企業的管理辦法去管理,但是屬於
化工企業,應該執行相關的安全環保法令法規。
2019年我國食用植物油消費量為
3300萬噸,按行業公開信息,每年廢油脂產生量約佔食用油總消費量的30%,那麼由食用油產生的廢油脂將達到990萬噸/年;此外,國內油脂精加工後以及各類肉製品加工後剩餘的下腳料同樣可以產生部分廢棄油脂,粗略估算我國每年產生廢油脂超1000萬噸。2019年中國生物柴油年度產量為55.1萬噸,按照0.97噸廢棄食用油大約可生產1噸生物柴油來測算,我國用於生柴製作的廢棄油脂不足6%。國內的生柴原料除中國國內產生的回收油外,中國部分公司還會進口廢油脂原材料——
棕櫚酸油。棕櫚酸油是棕櫚油壓榨或者精煉後產生的副產品,是馬來和印尼的重要出口產品之一。以中國最大的生物柴油生產公司龍巖卓越新能源為例,2018年,該公司進口廢油脂佔全部油脂採購量的7.86%。生物柴油可以像柴油一樣使用,是典型的「綠色能源」,具有環保性能好、發動機啟動性能好、燃料性能好,原料來源廣泛、可再生等特性。大力發展生物柴油對經濟可持續發展、推進能源替代、減輕環境壓力、控制城市大氣汙染具有重要的戰略意義。
生物柴油最普遍的製備方法是
酯交換反應。由植物油和脂肪中佔主要成分的
甘油三酯與醇(一般是
甲醇)在催化劑存在下反應,生成
脂肪酸酯。
脂肪酸酯的物理和化學性質與
柴油非常相近甚至更好。1853年,兩個化學家E達菲(E. Duffy)和J.派屈克(J. Patrick),第一次試驗成功將
植物油酯交換製造
肥皂。西元1876年德國工程師魯道夫·狄塞爾(Rudolf Diesel)發明了
柴油引擎。最初使用花生油當燃料,但花生油成本太貴,難以與汽油競爭,後來便使用石化柴油做為燃料。In chemistry, a hydrocarbon is any chemical compound that consists only of the elements carbon (C) and hydrogen (H). They all contain a carbon backbone, called a carbon skeleton, and have hydrogen atoms attached to that backbone. hydrocarbon is a member of a large group of organic chemicals, containing only the elements hydrogen and carbon. They are major constituents of crude petroleum and natural gas, from which certain fractions are extracted for use as fuel and as raw materials for the chemical industry. In hydrocarbon molecules, carbon atoms form chains, which may be straight, branched, or joined to form rings. Hydrocarbon molecules containing only single bonds between carbon atoms (alkanes) are said to be saturated; those with double (alkenes) or triple bonds (alkynes) are unsaturated. Hydrocarbons that contain the benzene ring in their structure are called aromatic; those without such a ring are called aliphatic. The wide range of structural features in hydrocarbon molecules gives rise to a vast number of different compounds, many of which are important in manufacturing plastics, textiles, and drugs. 生物燃料分為兩類:第一類是指基於
糧食作物或植物油生產的生物燃料,包括用植物油生產的生物柴油和用玉米及甘蔗生產的生物乙醇;第二類的原料主要是
非糧作物,即動物油及廢棄食用油生產的生物柴油和以秸稈、枯草、木屑等廢棄物生產的纖維素乙醇。
生物柴油是用植物油、動物油、廢棄油脂或微生物油脂為原料,與甲醇或乙醇經酯轉化而製成,
B30、B20是指在石化柴油和生物柴油的混合油中,生物柴油在共混物中的佔比達到30%和20%。
烴 [
hydrocarbon]是只含碳和氫兩種元素的有機化合物。碳原子形成化合物的骨架,氫原子附著在骨架上。烴是石油和天然氣的主要成分,可用作燃料、潤滑劑以及生產塑料、纖維、橡膠、溶劑、炸藥和化工產品的原料。若有足夠的氧且完全燃燒,則可生成二氧化碳和水;氧不足時就生成一氧化碳。烴的兩種主要類型是脂肪類和芳香類。脂肪烴中的碳原子排成直鏈或支鏈,或者連接成非芳香性的環。脂肪族化合物可以是飽和的(烷烴);如果碳原子間含有雙鍵或三鍵,則稱為不飽和烴(例如烯烴、鏈烯烴、炔)。除了最簡單的烴外,烴都有同分異構體。乙烯、甲烷、乙炔、苯、甲苯和萘都是烴類。用油脂來做為現今柴油引擎的燃料會遇到一個問題,油脂的黏度太高難以噴成細霧狀使用,1990年後開始使用轉脂化技術將
高黏度的油脂轉化為
低黏度的單鏈脂肪酸甲酯,做為柴油引擎的原料使用,因此各國皆開始利用為加工過的油脂或者是廢棄的油脂經煉成生質柴油。當時,為紀念該次活動,宣布8月10日為「
國際生物柴油日」。生產生物柴油的原料往往根據各地區可以得到的原料種類不同而不同。實際產油效率和技術不同。
Biodiesel refers to a vegetable oil - or animal fat-based diesel fuel consisting of long-chain alkyl (methyl, ethyl, or propyl) esters. Biodiesel is typically made by chemically reacting lipids (e.g.,
vegetable oil,
soybean oil,
animal fat (tallow)) with an alcohol producing fatty acid esters.Biodiesel is meant to be used in standard diesel engines and is thus distinct from the vegetable and waste oils used to fuel converted diesel engines. Biodiesel can be used alone, or blended with petrodiesel in any proportions. Biodiesel blends can also be used as heating oil.The
National Biodiesel Board (USA) also has a technical definition of "biodiesel" as a mono-alkyl ester.世界上各國在發展生物柴油行業時主要原料選自當地較充足/過剩的自然資源,比如馬來和印尼原材料全部為棕櫚油,歐洲主要以菜籽油、棕櫚油和回收油為主,巴西和美國主要原料為豆油。與別國不同,中國的原材料全部為回收油。
回收油包括餐飲廢棄油脂(潲水油、地溝油)和酸化油。
酸化油是指精煉油脂廠榨油後所產生腳料經硫酸催化處理後得到的油,腳料是指榨油精煉後的沉澱物。
地溝油泛指在生活中存在的各類劣質油,如回收的食用油、反覆使用的炸油等,已被嚴禁用於食用油領域。地溝油主要來源為城市大型飯店下水道的隔油池,長期食用會對人體的危害極大。地溝油可以用於生產生物柴油,製備選礦藥劑以及生產乙醇和沼氣等。
地溝油可分為三類:一是狹義的地溝油,即將下水道中的油膩漂浮物或者將賓館、酒樓的剩飯、剩菜(通稱泔水)經過簡單加工、提煉出的油;二是劣質豬肉、豬內臟、豬皮加工以及提煉後產出的油;三是用於油炸食品的油使用次數超過一定次數後,再被重複使用或往其中添加一些新油後重新使用的油。國內部分不正規小型油脂加工廠會將地溝油和植物油混合銷售,但地溝油中有一種比砒霜威力更大的致癌物質-黃麴黴素,且製作過程極不衛生,常混有大量汙水、洗滌劑,鉛含量往往嚴重超標,食用會引起身體不適,過量食用會導致中毒性肝病甚至癌症。地溝油事件之所以屢禁不止,相關法律專業人士表示:「地溝油犯罪,檢測難度比較大,因為地溝油的外表和成分,和我們日常的食用油沒有太大的差別;還有就是消費者就算吃了地溝油,也不會立即出現身體傷害的反應,非常隱蔽,舉證維權都非常非常難,這就導致某些商家利益薰心,鋌而走險。」
潲水油是從餐飲的剩菜剩飯中提取的油脂。由於同地溝油一樣,混有大量的汙水、垃圾和洗滌劑。此類油脂多數是通過地下作坊提煉,無法根除細菌和有害化學成分,遠遠達不到國家規定的食用油衛生指標。
從原理上說,未經加工的植物油只能在柴油發動機裡短期直接使用。這是由於植物油含有飽和度不同的物質而會使柴油發動機上的潤滑油發生聚合。而且植物油和柴油分子結構不同,這也可能造成霧化不良、燃燒不完全、噴嘴堵塞等問題。
我國的生物柴油並未實行強制摻混政策。從別國經驗來看,生物柴油的推廣是一個系統性的政府工程,需要政府政策及資金的支持。受到技術水平、產品質量和政策推廣等因素的影響,我國的生物柴油市場相對較小。生物柴油主要用於動力燃料,由於跟化石柴油在燃料性質方面相近,因此生柴在多數國家都主要用於交通運輸行業。
但用於公路交通運輸的生物柴油質量要求相對較高,目前並非我國主要應用方向。我國不少地區民營企業的生物柴油無法通過合法渠道進入中石油和中石化的銷售網絡。目前,我國的生物柴油主要用於化工領域和工業燃料領域。化工領域主要應用於環保型增塑劑;工業燃料領域主要用作替代煤炭作工業鍋爐燃料,或者用作民用砂船和挖掘機等。生物柴油在交通領域沒有大面積推廣除了政府政策原因之外,這與目前國內生物柴油生產企業多數規模較小、原材料無法長期穩定供應、生柴產品質量參差不齊等問題均有關係。我國雖然並未像其他國家一樣實行強制摻混政策,但不少省市已開始在轄區內推廣生物柴油。上海市從 2013 年即開始在公交車、環衛車輛上使用 B5 生物柴油, 2018年開始向社會車輛銷售 B5 生物柴油。為此,上海市節能減排(應對氣候變化)專項資金會對生物柴油生產商進行補貼。目前印尼和馬來西亞每年用於生物柴油生產的棕櫚油量分別為200萬噸和60萬噸,而歐洲方面每年用於生物柴油生產的菜油達到550萬噸(棕櫚油用量也達到150萬噸);巴西和阿根廷方面,阿根廷每年用於生物柴油生產的豆油約為
273萬噸,而巴西則在
190萬噸左右。而美國方面,根據EIA的統計,2013年美國用於生物柴油生產的豆油用量達到了
550萬噸。 顯而易見,近年來越來越多的植物油被用於生物柴油生產,由此使得
國際原油與
全球植物油市場通過能源的紐帶維繫在一起。在近年來全球植物油食用剛性需求增幅下降的情況下,高企的國際原油一度成為了全球植物油市場最堅強的後盾。正是在這樣的背景下,今年國際原油的暴跌令全球油脂市場難逃「池魚之殃」。歐盟是全球最大的生柴產地和消費地,對生柴消費的支持力度非常大。2009年歐盟頒發《可再生能源指令》,要求成員國於2020年在交通部門的生物燃料摻混比例達到10%,到2020年提升至20%。2018年,歐盟再次對《可再生能源指令》進行修訂,要求到2030年可再生能源在總能源需求中的比例提升至32%。在政策的支持下,歐盟2019年的年消費量預計高達1738萬千升,但產量僅為1417萬千升,存在約320萬千升的供需缺口,所以歐盟也是世界上最大的生柴進口國。歐盟生柴進口的主要國家為阿根廷、印尼、馬來和中國,18年進口量中有42%來自阿根廷。我國19年向歐盟累計出口58萬噸,折合約67萬千升,佔歐盟需求缺口的21%左右。Lubricity of fuel plays an important role in wear that occurs in an engine. An engine relies on its fuel to provide lubricity for the metal components that are constantly in contact with each other. Biodiesel is a much better lubricant compared with petroleum diesel due to the presence of esters. Tests have shown that the addition of a small amount of biodiesel to diesel can significantly increase the lubricity of the fuel in short term. However, over a longer period of time (2–4 years), studies show that biodiesel loses its lubricity. This could be because of enhanced corrosion over time due to oxidation of the unsaturated molecules or increased water content in biodiesel from moisture absorption.2019年,中國回收油出口將增至50萬噸。這與我國每年回收油高達1000萬噸的產量相比規模並不大。多數地溝油因為凝點過高、酸值過高不適合歐洲的生柴生產工藝,因此並非都可出口。我國生物柴油進口量近幾年增長較快,2017年進口量僅1.54萬噸,而2018和2019年進口量高達75萬噸和84萬噸。我國進口的生物柴油主要是馬來西亞、印度尼西亞等由棕櫚油製取的生物柴油,凝點較高,適用於廣東等南方溫暖地區。根據市場消息,部分從東南亞進口的棕櫚油制生物柴油被重新以中國柴油的名義出口至歐盟地區,這也是18-19年生柴進口大幅增加的原因。2019年中國從東南亞進口生物柴油的均價為
4469元/噸,而向歐盟出口生柴的均價高達
6181元/噸,中間價差高達
1712元/噸。這可能是促使部分中國廠商進口東南亞生柴稍作加工甚至不加工直接轉出口的原因之一。One of the main concerns regarding biodiesel is its viscosity. The viscosity of diesel is 2.5–3.2 cSt at 40 °C and the viscosity of biodiesel made from soybean oil is between 4.2 and 4.6 cSt The viscosity of diesel must be high enough to provide sufficient lubrication for the engine parts but low enough to flow at operational temperature. High viscosity can plug the fuel filter and injection system in engines. Vegetable oil is composed of lipids with long chains of hydrocarbons, to reduce its viscosity the lipids are broken down into smaller molecules of esters. This is done by converting vegetable oil and animal fats into alkyl esters using transesterification to reduce their viscosity Nevertheless, biodiesel viscosity remains higher than that of diesel, and the engine may not be able to use the fuel at low temperatures due to the slow flow through the fuel filter.廢棄油脂的價格主要與生物柴油價格、國內外植物油(尤其是棕櫚油、豆油、菜籽油等生物柴油原料油)價格相關。17年下半年至19年上半年,中國回收油的價格相對穩定,在
3500元/噸上下浮動。根據嘉澳公司公告,其2018年地溝油採購均價為3571.25元/噸。2019年下半年,隨著油脂上漲,地溝油價格一路上行,由7月均價3550元/噸上漲至12月
4572元/噸,漲幅達29%。作為對比,DCE棕櫚油7月收盤均價4251元/噸,截至12月上漲40%至5964元/噸。今年以來,疫情重挫餐飲行業,大量餐館減少或者暫停運營,導致回收油產量大幅減少。2020年春節期間,地溝油因原料短缺,且地溝油市場工作恢復較慢,價格一度猛漲至
5300元/噸。隨後,回收油價格跟隨植物油脂先抑後漲,4月均價降至3647元/噸低點,後大幅反彈,現已漲至4780元/噸高位。Biodiesel has higher brake-specific fuel consumption compared to diesel, which means more biodiesel fuel consumption is required for the same torque. However, B20 biodiesel blend has been found to provide maximum increase in thermal efficiency, lowest brake-specific energy consumption, and lower harmful emissions. The engine performance depends on the properties of the fuel, as well as on combustion, injector pressure and many other factors. Since there are various blends of biodiesel, that may account for the contradicting reports in regards engine performance.中國的生柴主要以回收油為原料,而回收油制生柴的減排效果最為明顯。根據歐盟的官方測算,回收油製取的生物柴油其溫室氣體的減排量高達88%,高於其他精煉油生物柴油,其他植物油的碳減排量比例大致為36%-62%。而且,在歐盟的 Dutch Double Counting 認證規則下,與以棕櫚油、大豆油、菜籽油等油脂為原料生產的生物質能源相比,以廢棄地溝油為原料生產生物質能源,可以雙倍計算二氧化碳排放減排量,因此歐盟對廢棄油脂製作的生物柴油的需求逐步增加。近幾年中國對歐盟的出口規模逐年提升,這與歐盟對棕櫚油制生柴的抵制也不無關係。印尼是全球第二大生柴生產地區,其生柴原料為棕櫚油。2019年底,歐盟委員會認定生產棕櫚油導致森林過度砍伐,違反了環境保護原則,並決定在2030年之前逐步淘汰棕櫚油制生物柴油。不少國家也單獨對此進行立法。法國立法者於2018年底投票決定從2020年起從生物燃料計劃中移除棕櫚油,瑞典當地立法也以可追溯性問題為由減少基於棕櫚油的生物燃料。其實不僅是棕櫚油制生物柴油,歐盟近年來對以食物油為原料的生物柴油均進行了限制。歐盟的第一代生物柴油原料為菜油、棕櫚油等食物油,本著可持續性發展的原則,歐盟限制基於糧食作物的生物燃料摻混上限,2021年上限為7%,2030年上限下降為3.8%。歐盟第二代生物能源原料主要來自廢棄有機物,為支持其發展,歐盟規定第二代生物燃料在2021年摻混下限為1.5%,2030年下限上升至6.8%。考慮到歐盟對廢棄有機物制生物燃料的大力支持,未來中國生物柴油出口的市場依然將集中在歐盟地區,且沒有外力因素影響的前提下,出口規模或逐步提高。2、生物柴油的分子式基本固定。實際產品可以說主要是C16、C18脂肪酸甲酯,分子量基本是290—300之間;而石油柴油由於含有烷烴、烯烴、芳烴,所以不好固定分子式表達,也不好確定一個分子量。3、生物柴油不含芳烴,與石油柴油相比,多環芳烴含量極低是生物柴油的一個非常明顯的優勢。4、生物柴油都是直鏈,沒有異構體(可能存在部分反式脂肪酸)。只有歐洲的部分地區採用100%生物柴油(B100)作為車用燃料,其它基本都是採用B2~20(即在石油柴油中加2~20%的生物柴油)柴油。B30也是目前使用的棕櫚油成分最高的生物燃料。在我國,近期內汽車不可能用100%生物柴油,主要還是用B2~20柴油。Blends of biodiesel and conventional hydrocarbon-based diesel are products most commonly distributed for use in the retail diesel fuel marketplace. Much of the world uses a system known as the "
B" factor to state the amount of biodiesel in any fuel mix:100% biodiesel is referred to as
B10020% biodiesel, 80% petrodiesel is labeled
B205% biodiesel, 95% petrodiesel is labeled
B52% biodiesel, 98% petrodiesel is labeled
B2Blends of 20% biodiesel and lower can be used in diesel equipment with no, or only minor modifications, although certain manufacturers do not extend warranty coverage if equipment is damaged by these blends. The B6 to B20 blends are covered by the ASTM D7467 specification. Biodiesel can also be used in its pure form (B100), but may require certain engine modifications to avoid maintenance and performance problems. Blending B100 with petroleum diesel may be accomplished by:Mixing in tanks at manufacturing point prior to delivery to tanker truckSplash mixing in the tanker truck (adding specific percentages of biodiesel and petroleum diesel)In-line mixing, two components arrive at tanker truck simultaneously.Metered pump mixing, petroleum diesel and biodiesel meters are set to X total volume, transfer pump pulls from two points and mix is complete on leaving pump.從全球生物柴油原料用量看,用量最大的是豆油,而棕櫚油僅排第三,三大油脂中產量最高的是棕櫚油,用量卻是最少的,2017年數據顯示,全球豆油產量5620萬噸,菜籽油2835萬噸,棕櫚油6682萬噸,豆油用於生物柴油979萬噸,菜籽油672萬噸,棕櫚油565萬噸,佔比分別為豆油17.42%,菜油23.70%,棕櫚油8.46%,可見棕櫚油佔比最低。其次棕櫚樹是全球最高效的油脂作物,單位面積產量可達大豆和菜籽的10倍左右,成本較低,棕櫚油價格也長期是三大油脂中最便宜的,因此原油價格下跌,對棕櫚油制生物柴油的衝擊也是最小的。據了解,印尼人口有2.64億,僅次於中國、印度和美國,居世界第四位,領土面積大190萬平方公裡,生物柴油消費有增長空間。首先印尼島嶼眾多,有大量船舶運輸,利於使用生物柴油消費,其次印尼之前就已經推出B20(20%摻混率)生物柴油摻混政策,但由於之前政府並未嚴格執行,在2017年實際摻混率僅達到9.2%,今年從9月1日起印尼政府已要求所有交通工具以及重型機械強制使用摻混生物柴油的燃料,預計生物柴油消費接近翻倍,對應多消耗棕櫚油200萬噸左右。
生物柴油它是指以油料作物如大豆、油菜、棉、棕櫚等,野生油料植物和工程微藻等水生
植物油脂以及
動物油脂、餐飲
垃圾油等為原料油通過酯交換或熱化學工藝製成的可代替石化柴油的再生性柴油燃料。生物柴油和石化柴油相比含硫量低,使用後可使二氧化硫和硫化物排放大大減少。排放尾氣指標可達到歐洲Ⅱ號和Ⅲ號排放標準。生物柴油和石化柴油相比,生物柴油具有良好的發動機低溫啟動性能,冷濾點達到-20℃。可以降低發動機供油系統和缸套的摩擦損失,增加發動機的使用壽命,從而間接降低發動機的成本。生物柴油的閃點高於石化柴油,它不屬於危險燃料,在運輸、儲存、使用等方面的優點明顯。生物柴油的十六烷值比柴油高,因此燃料在使用時具有更好的燃燒抗暴性能,因此可以採用更高壓縮比的發動機以提高其熱效率。生物柴油整個工藝流程實現閉路循環,原料全部綜合利用,實現清潔生產。大致描述如下:
原料預處理(脫水、脫臭、淨化)-
反應釜(加醇+催化劑+70℃)-
攪拌反應1小時--
沉澱分離排雜--
回收醇-
過濾---
成品 生物柴油可用作鍋爐、渦輪機、柴油機等的燃料,工業上應用的主要是脂肪酸甲酯。生物柴油是一種優質清潔柴油,可從各種生物質提煉,因此可以說是取之不盡,用之不竭的能源,在資源日益枯竭的今天,有望取代石油成為替代燃料。1) 生物柴油的的低溫流動性問題。在不加低溫流動性改進劑的情況下,大部分油脂製備的生物柴油冷濾點都在-10℃以上,很多都在0℃以上,有的甚至超過 20℃。這樣,在溫度較低時,生物柴油就無法車用。即使在溫度很高的夏天,有些飽和脂肪酸含量高的油脂製備的生物柴油也很難車用。為了解決這個問題,目前 最有效的、成本最低的就是與石油柴油調兌使用。2)生物柴油的溶解性問題。生物柴油具有比較強的溶解能力,是一種比較好的新型環保有機溶劑。其溶解能力超過烷烴,比無味煤油強很多,但比芳烴、氯代烴弱。由於生物柴油溶解能力強,這對汽車發動機以及加油站的橡塑部件具有溶漲性,時間長了肯定會出問題~~比如漏油等。至於生物柴油的溶解能力,大家可以做個簡單的實驗:把一次性飯盒(泡沫塑料)放進去,略加攪拌,甚至不攪拌,看看有什麼現象發生?我做過,常溫下的溶解速度就很快!對於輪胎,只要加熱到一定溫度,也會很快溶解!對於德國等國家使用B100,他們的加油站和發動機橡塑部件都經特殊處理或更換的。僅僅基於這個問題,我國短期內也不可能推廣使用B100車用燃料,更不用提原料問題了。這兩個是主要的,其它還有一些次要的原因就不一一列舉了。3)對於B2~20柴油的使用問題,注意與乙醇汽油有一點一樣:如果是舊車,一定要先清洗髮動機,對於使用生物柴油含量高的柴油時尤其注意。因為用過的發動機壁上會殘留一些固體物質,這些固體物質長時間泡在含生物柴油的柴油中,會逐漸溶漲脫落,從而造成發動機堵塞。印尼的
B30被認為是全球
棕櫚油含量最高的強制混合生物柴油。該政策旨在增加可再生能源的使用,減少石油進口,同時促進國內對棕櫚油的需求。棕櫚油是印尼的主要出口產品之一。作為主要的棕櫚油生產國,自從歐盟出於環境考慮開始減少進口以來,印尼一直在努力尋找新的棕櫚油出口市場。為生產B40生物柴油,當地的生物柴油精煉廠需要將至少1300萬升千升的棕櫚油加工成脂肪酸甲酯(FAME),這些脂肪酸甲酯將用於生物柴油。能源和礦產資源部的數據顯示,到2021年,當地生物柴油精煉廠的年總產能將增至1180萬千升,低於供應足夠BB0燃料所需的產能。棕櫚油生產商PT Tunas Baru Lampung的技術顧問Sapto Tranggono亦表示,數家生物柴油精煉廠可能無法生產B40,因B40生物柴油混合原料的質量標準高於B30。其稱,「老精煉廠沒有能力提煉毛棕櫚油來生產B40生物柴油。此外,汽車製造商也可能需要升級他們的燃料過濾器,以使他們的產品能夠使用B40。」今年1月,印尼青年巴士企業家協會(Young Autobus Entrepreneurs Association)抱怨稱,B20導致他們的發動機運轉不靈,因生物柴油混合物在發動機過濾器中留下沉積物。該協會敦促政府更多地關注B30對發動機的影響。為了在不損害汽車引擎的情況下,將生物柴油中植物油的比例提高到40%,Tatang建議政府將30%的脂肪酸甲酯與另外10%的生物氫化柴油混合,這種柴油也被稱為綠色柴油。其稱,「脂肪酸甲酯的最大混合比例是30,就像B30燃料一樣,因為更高的植物油衍生燃料的比例不符合柴油的氧化標準。這可能會損壞引擎。」
Plastics : High density polyethylene (HDPE) is compatible but polyvinyl chloride (PVC) is slowly degraded. Polystyrene is dissolved on contact with biodiesel.
Metals : Biodiesel (like methanol) has an effect on copper-based materials (e.g. brass), and it also affects zinc, tin, lead, and cast iron. Stainless steels (316 and 304) and aluminum are unaffected.
Rubber : Biodiesel also affects types of natural rubbers found in some older engine components. Studies have also found that fluorinated elastomers (FKM) cured with peroxide and base-metal oxides can be degraded when biodiesel loses its stability caused by oxidation. Commonly used synthetic rubbers FKM- GBL-S and FKM- GF-S found in modern vehicles were found to handle biodiesel in all conditions.美國政府正在採取行動提振美國對玉米乙醇和大豆生物柴油的需求,藉此總統試圖在明年大選前緩和農民和中西部政客的批評。美國環境保護署和農業部周五概述了援助這些可再生燃料的幾個步驟,承諾提高年度生物燃料混合配額,以彌補豁免某些小型煉油廠的規定。這一轉變仍需正式提議和編纂,它將有效地迫使更大的非豁免煉油廠填補空缺。這些機構讚揚Trump總統,稱他促成了美國生物燃料政策的交易,這一領域劃分了他的兩個主要政治支持者:農業和石油工業。然而,儘管最終計劃贏得了生物燃料倡導者的廣泛讚揚,但它遭到了石油公司及其政治盟友的譴責,他們警告稱,這將損害一些煉油廠。農業部長桑尼·濮培德在一份電子郵件聲明中表示:「川普總統再次證明,他是美國農民和美國農村的冠軍。」
Biodiesel can be used in pure form (B100) or may be blended with petroleum diesel at any concentration in most injection pump diesel engines. New extreme high-pressure (29,000 psi) common rail engines have strict factory limits of B5 or B20, depending on manufacturer. Biodiesel has different solvent properties than petrodiesel, and will degrade natural rubber gaskets and hoses in vehicles (mostly vehicles manufactured before 1992), although these tend to wear out naturally and most likely will have already been replaced with FKM, which is nonreactive to biodiesel. Biodiesel has been known to break down deposits of residue in the fuel lines where petrodiesel has been used. As a result, fuel filters may become clogged with particulates if a quick transition to pure biodiesel is made. Therefore, it is recommended to change the fuel filters on engines and heaters shortly after first switching to a biodiesel blend.Since the passage of the Energy Policy Act of 2005, biodiesel use has been increasing in the United States. In the UK, the Renewable Transport Fuel Obligation obliges suppliers to include 5% renewable fuel in all transport fuel sold in the UK by 2010. For road diesel, this effectively means 5% biodiesel (B5).
Vehicular use and manufacturer acceptanceIn 2005, Chrysler (then part of DaimlerChrysler) released the Jeep Liberty CRD diesels from the factory into the American market with 5% biodiesel blends, indicating at least partial acceptance of biodiesel as an acceptable diesel fuel additive. In 2007, DaimlerChrysler indicated its intention to increase warranty coverage to 20% biodiesel blends if biofuel quality in the United States can be standardized.The Volkswagen Group has released a statement indicating that several of its vehicles are compatible with B5 and B100 made from rape seed oil and compatible with the EN 14214 standard. The use of the specified biodiesel type in its cars will not void any warranty.Mercedes Benz does not allow diesel fuels containing greater than 5% biodiesel (B5) due to concerns about "production shortcomings". Any damages caused by the use of such non-approved fuels will not be covered by the Mercedes-Benz Limited Warranty.Starting in 2004, the city of Halifax, Nova Scotia decided to update its bus system to allow the fleet of city buses to run entirely on a fish-oil based biodiesel. This caused the city some initial mechanical issues, but after several years of refining, the entire fleet had successfully been converted.In 2007, McDonalds of UK announced it would start producing biodiesel from the waste oil byproduct of its restaurants. This fuel would be used to run its fleet.The 2014 Chevy Cruze Clean Turbo Diesel, direct from the factory, will be rated for up to B20 (blend of 20% biodiesel / 80% regular diesel) biodiesel compatibilityBritish train operating company Virgin Trains claimed to have run the UK's first "biodiesel train", which was converted to run on 80% petrodiesel and 20% biodiesel.The Royal Train on 15 September 2007 completed its first ever journey run on 100% biodiesel fuel supplied by Green Fuels Ltd. His Royal Highness, The Prince of Wales, and Green Fuels managing director, James Hygate, were the first passengers on a train fueled entirely by biodiesel fuel. Since 2007, the Royal Train has operated successfully on
B100 (100% biodiesel).Similarly, a state-owned short-line railroad in eastern Washington ran a test of a 25% biodiesel / 75% petrodiesel blend during the summer of 2008, purchasing fuel from a biodiesel producer sited along the railroad tracks. The train will be powered by biodiesel made in part from canola grown in agricultural regions through which the short line runs.Also in 2007, Disneyland began running the park trains on B98 (98% biodiesel). The program was discontinued in 2008 due to storage issues, but in January 2009, it was announced that the park would then be running all trains on biodiesel manufactured from its own used cooking oils. This is a change from running the trains on soy-based biodiesel.In 2007, the historic Mt. Washington Cog Railway added the first biodiesel locomotive to its all-steam locomotive fleet. The fleet has climbed up the western slopes of Mount Washington in New Hampshire since 1868 with a peak vertical climb of 37.4 degrees.On 8 July 2014, the then Indian Railway Minister D.V. Sadananda Gowda announced in Railway Budget that 5% bio-diesel will be used in Indian Railways' Diesel Engines.A test flight has been performed by a Czech jet aircraft completely powered on biodiesel. Other recent jet flights using biofuel, however, have been using other types of renewable fuels.On November 7, 2011 United Airlines flew the world's first commercial aviation flight on a microbially derived biofuel using Solajet™, Solazyme's algae-derived renewable jet fuel. The Eco-skies Boeing 737-800 plane was fueled with 40 percent Solajet and 60 percent petroleum-derived jet fuel. The commercial Eco-skies flight 1403 departed from Houston's IAH airport at 10:30 and landed at Chicago's ORD airport at 13:03.Biodiesel can also be used as a heating fuel in domestic and commercial boilers, a mix of heating oil and biofuel which is standardized and taxed slightly differently from diesel fuel used for transportation. Bioheat® fuel is a proprietary blend of biodiesel and traditional heating oil. Bioheat® is a registered trademark of the National Biodiesel Board [NBB] and the National Oilheat Research Alliance [NORA] in the U.S., and Columbia Fuels in Canada). Heating biodiesel is available in various blends. ASTM 396 recognizes blends of up to 5 percent biodiesel as equivalent to pure petroleum heating oil. Blends of higher levels of up to 20% biofuel are used by many consumers. Research is underway to determine whether such blends affect performance.Older furnaces may contain rubber parts that would be affected by biodiesel's solvent properties, but can otherwise burn biodiesel without any conversion required. Care must be taken, however, given that varnishes left behind by petrodiesel will be released and can clog pipes- fuel filtering and prompt filter replacement is required. Another approach is to start using biodiesel as a blend, and decreasing the petroleum proportion over time can allow the varnishes to come off more gradually and be less likely to clog. Thanks to its strong solvent properties, however, the furnace is cleaned out and generally becomes more efficient. A technical research paper describes laboratory research and field trials project using pure biodiesel and biodiesel blends as a heating fuel in oil-fired boilers. During the Biodiesel Expo 2006 in the UK, Andrew J. Robertson presented his biodiesel heating oil research from his technical paper and suggested B20 biodiesel could reduce UK household CO2 emissions by 1.5 million tons per year.A law passed under Massachusetts Governor Deval Patrick requires all home heating diesel in that state to be 2% biofuel by July 1, 2010, and 5% biofuel by 2013. New York City has passed a similar law.With 80-90% of oil spill costs invested in shoreline cleanup, there is a search for more efficient and cost-effective methods to extract oil spills from the shorelines. Biodiesel has displayed its capacity to significantly dissolve crude oil, depending on the source of the fatty acids. In a laboratory setting, oiled sediments that simulated polluted shorelines were sprayed with a single coat of biodiesel and exposed to simulated tides. Biodiesel is an effective solvent to oil due to its methyl ester component, which considerably lowers the viscosity of the crude oil. Additionally, it has a higher buoyancy than crude oil, which later aids in its removal. As a result, 80% of oil was removed from cobble and fine sand, 50% in coarse sand, and 30% in gravel. Once the oil is liberated from the shoreline, the oil-biodiesel mixture is manually removed from the water surface with skimmers. Any remaining mixture is easily broken down due to the high biodegradability of biodiesel, and the increased surface area exposure of the mixture.Biodiesel in generatorsIn 2001, UC Riverside installed a 6-megawatt backup power system that is entirely fueled by biodiesel. Backup diesel-fueled generators allow companies to avoid damaging blackouts of critical operations at the expense of high pollution and emission rates. By using B100, these generators were able to essentially eliminate the byproducts that result in smog, ozone, and sulfur emissions. The use of these generators in residential areas around schools, hospitals, and the general public result in substantial reductions in poisonous carbon monoxide and particulate matter.藻(藻類生質燃料):每公頃16837升(公升,下同)(每英畝1800加侖)(估計數據)烏桕:每公頃4705-9073升(每英畝503-970加侖)
大豆:每公頃554-922升(每英畝59.2-98.6加侖)The power output of biodiesel depends on its blend, quality, and load conditions under which the fuel is burnt. The thermal efficiency for example of B100 as compared to B20 will vary due to the BTU content of the various blends. Thermal efficiency of a fuel is based in part on fuel characteristics such as: viscosity, specific density, and flash point; these characteristics will change as the blends as well as the quality of biodiesel varies. The American Society for Testing and Materials has set standards in order to judge the quality of a given fuel sample.Regarding brake thermal efficiency one study found that B40 was superior to traditional counterpart at higher compression ratios (this higher brake thermal efficiency was recorded at compression ratios of 21:1). It was noted that, as the compression ratios increased, the efficiency of all fuel types - as well as blends being tested - increased; though it was found that a blend of B40 was the most economical at a compression ratio of 21:1 over all other blends. The study implied that this increase in efficiency was due to fuel density, viscosity, and heating values of the fuels.生產生物柴油最常用的是酯交換反應。此外還有
氫化裂解、不使用催化劑的超臨界方法、
e-柴油、
高溫分解、
微乳狀液等方法。酯交換反應是將植物油和甲醇或乙醇混合,生成脂肪酸酯,即生物柴油。催化劑可以是酸,也可以是鹼,但是由於鹼催化的轉化率更高(>98%),若要提高為98%轉化率必需二級反應以上,通常一級反應酯化率在98%以下,而且常壓反應,沒有中間步驟,對設備的要求也低,因此一般是採用鹼催化反應。
酸鹼中和法:容易產生大量的酸與廢水製造汙染,同時利用鍋爐加熱也極為耗費能源。利用微波加熱,加入3~4%的甲醇做為催化劑,以固態氧化鍶為觸媒,將5公升廢食用油轉化成3公升生質柴油以及2公升甘油,耗電量僅0.3度,約1.2新臺幣。至於氧化鍶觸媒為固態性質,可以重複使用,沒有二次汙染問題。生物柴油一般不是直接作為燃料使用;而是與普通柴油混合使用。一個公認的經驗值是調和20%生物柴油(B20)。但是這個比例在使用有毒性成分的生質柴油時,可能會有爭議,例如非食品級的蓖麻油可能含有蓖麻毒素,如果燃燒不完全,可能導致安全性隱憂。因此在政府採用98:2的低混合比。生質柴油另一個環保優勢,是其可降低引擎廢氣排放。生物柴油幾乎「沒有含硫化物」,排放的廢氣自然也沒有硫化物。研究顯示如果用20%生質柴油的比例混合的話,柴油引擎NOx排放會增加2%,但微粒排放會降低15%,碳氫化合物排放會降低30%,一氧化碳的排放會降低20%,硫氧化合物的排放量會降低20%如果生質柴油的來源是「回鍋油」,可以減少餐廳換油成本,減少油炸用油的健康風險。以臺灣為例,大統長基公司2013年問題油品約140萬瓶油品,後續分別有2680公噸作為生質柴油(B2合成燃料)、39公噸作為馬路標線用料及機械潤滑油。一般認為,生物柴油的優點在於可以減少「一氧化碳等廢物」的排放量,而且運輸也比普通柴油安全。此外,研究發現,生物柴油的潤滑性能很高。有趣的是,調和5%以內可以提高潤滑性能,但是如果高於5%,潤滑性能卻不再增強。生質柴油在製作時必須將酸價給控制在0.50mgKOH/g以下,酸價過高會有腐蝕性。Fuel systems on the modern diesel engine were not designed to accommodate biodiesel, while many heavy duty engines are able to run with biodiesel blends e.g. B20. Traditional direct injection fuel systems operate at roughly 3,000 psi at the injector tip while the modern common rail fuel system operates upwards of 30,000 PSI at the injector tip. Components are designed to operate at a great temperature range, from below freezing to over 1,000 degrees Fahrenheit. Diesel fuel is expected to burn efficiently and produce as few emissions as possible. As emission standards are being introduced to diesel engines the need to control harmful emissions is being designed into the parameters of diesel engine fuel systems. The traditional inline injection system is more forgiving to poorer quality fuels as opposed to the common rail fuel system. The higher pressures and tighter tolerances of the common rail system allows for greater control over atomization and injection timing. This control of atomization as well as combustion allows for greater efficiency of modern diesel engines as well as greater control over emissions. Components within a diesel fuel system interact with the fuel in a way to ensure efficient operation of the fuel system and so the engine. If an out-of-specification fuel is introduced to a system that has specific parameters of operation, then the integrity of the overall fuel system may be compromised. Some of these parameters such as spray pattern and atomization are directly related to injection timing.One study found that during atomization biodiesel and its blends produced droplets that were greater in diameter than the droplets produced by traditional petrodiesel. The smaller droplets were attributed to the lower viscosity and surface tension of traditional petrol. It was found that droplets at the periphery of the spray pattern were larger in diameter than the droplets at the center this was attributed to the faster pressure drop at the edge of the spray pattern; there was a proportional relationship between the droplet size and the distance from the injector tip. It was found that B100 had the greatest spray penetration, this was attributed to the greater density of B100. Having a greater droplet size can lead to; inefficiencies in the combustion, increased emissions, and decreased horse power. In another study it was found that there is a short injection delay when injecting biodiesel. This injection delay was attributed to the greater viscosity of Biodiesel. It was noted that the higher viscosity and the greater cetane rating of biodiesel over traditional petrodiesel lead to poor atomization, as well as mixture penetration with air during the ignition delay period. Another study noted that this ignition delay may aid in a decrease of NOx emission.雖然生物柴油的開發作為一種替代能源被業界看好,但是卻鮮有生產商業化的例子。這主要來自植物油的成本。植物油的採購、運輸、儲存以及提取佔了生物柴油生產的大部分成本。但是也有觀點認為,由於生產生物柴油,需要大量的植物油原料,因此勢必需要興建種植園,因而可以帶動相關的農業生產。In some poor countries the rising price of vegetable oil is causing problems. Some propose that fuel only be made from non-edible vegetable oils such as camelina, jatropha or seashore mallow which can thrive on marginal agricultural land where many trees and crops will not grow, or would produce only low yields.Others argue that the problem is more fundamental. Farmers may switch from producing food crops to producing biofuel crops to make more money, even if the new crops are not edible. The law of supply and demand predicts that if fewer farmers are producing food the price of food will rise. It may take some time, as farmers can take some time to change which things they are growing, but increasing demand for first generation biofuels is likely to result in price increases for many kinds of food. Some have pointed out that there are poor farmers and poor countries who are making more money because of the higher price of vegetable oil.Biodiesel from sea algae would not necessarily displace terrestrial land currently used for food production and new algaculture jobs could be created.生物柴油也存在一些技術限制,不適應很多地區。由於它比普通柴油粘度高,因此在低溫下會降低可用性。如同雞湯、紅燒肉放到冰箱冷藏,油脂會凝結成白色黏稠狀,學術上的名詞就叫做「
雲化」(cloud),凝結的溫度則叫做「
雲點」(cloud point)。石油基柴油的雲點大約在攝氏零下15度,而100%生質柴油B100在攝氏零度時便會開始雲化,低溫時很容易堵塞汽車油路。在冬天使用生物柴油必須加入添加劑或者其他的保溫措施。而在溼熱環境下,長期儲存生物柴油還需要考慮到抑制微生物和細菌的滋生。When biodiesel is cooled below a certain point, some of the molecules aggregate and form crystals. The fuel starts to appear cloudy once the crystals become larger than one quarter of the wavelengths of visible light - this is the cloud point (CP). As the fuel is cooled further these crystals become larger. The lowest temperature at which fuel can pass through a 45 micrometre filter is the cold filter plugging point (CFPP). As biodiesel is cooled further it will gel and then solidify. Within Europe, there are differences in the CFPP requirements between countries. This is reflected in the different national standards of those countries. The temperature at which pure (B100) biodiesel starts to gel varies significantly and depends upon the mix of esters and therefore the feedstock oil used to produce the biodiesel. For example, biodiesel produced from low erucic acid varieties of canola seed (RME) starts to gel at approximately −10 °C (14 °F). Biodiesel produced from beef tallow and palm oil tends to gel at around 16 °C (61 °F) and 13 °C (55 °F) respectively. There are a number of commercially available additives that will significantly lower the pour point and cold filter plugging point of pure biodiesel. Winter operation is also possible by blending biodiesel with other fuel oils including #2 low sulfur diesel fuel and #1 diesel / kerosene.Another approach to facilitate the use of biodiesel in cold conditions is by employing a second fuel tank for biodiesel in addition to the standard diesel fuel tank. The second fuel tank can be insulated and a heating coil using engine coolant is run through the tank. The fuel tanks can be switched over when the fuel is sufficiently warm. A similar method can be used to operate diesel vehicles using straight vegetable oil.Biodiesel has promising lubricating properties and cetane ratings compared to low sulfur diesel fuels. Depending on the engine, this might include high pressure injection pumps, pump injectors (also called unit injectors) and fuel injectors.
生質柴油另一個劣勢,是B100的蘊含能量比石油基的柴油燃料低11%,最大馬力輸出大約會減少5-7%。但這個差距並不大,如果是使用5%生質柴油更幾乎沒有差別。反而是生質柴油的黏性大於石油基柴油,對燃噴射料系統和引擎組件能提供較好的潤滑性,延長引擎系統壽命。許多車主指定使用B2柴油(2%生質柴油,98%石油基柴油),目的就是在幫助潤滑引擎。而前面提到美國小學生乘坐的這些大豆動力車,則是使用B5到B30的柴油。為協助生物柴油的開發,在不少國家(如加拿大、南韓等)都會投入生物科技工業園的發展,透過把相關物料的生產和開發的過程放在一起,以減低生物柴油的開發成本。在政府推廣生質柴油後,由於有車主反應使用B2生質柴油常有油路堵塞及引擎容易熄火的問題,加油站業者亦有油槽沉積物增生、加油機濾器阻塞之案例。雖然還無法證實與生質柴油的製造或儲運過程還是與氣候或車主保養、加油站業者之管理有關,但2014年5月5日,經濟部仍決定公告修正「石油煉製業與輸入業銷售國內車用柴油摻配酯類之比率實施期程範圍及方式」,將強制添加生質柴油2%以上之命令,改為車用柴油得摻配酯類。從2014年5月起逐步停供B2生質柴油,以後待問題解決後再重新供應生質柴油。2014年10月,零售加油站及遊覽車業同聲反對恢復銷售及使用生質柴油,遊覽車公會全聯會則強調,使用近一年時間已發生過500多件行駛中熄火的傷害事件。Emissions are inherent to the combustion of diesel fuels that are regulated by the U.S. Environmental Protection Agency (E.P.A.). As these emissions are a byproduct of the combustion process, in order to ensure E.P.A. compliance a fuel system must be capable of controlling the combustion of fuels as well as the mitigation of emissions. There are a number of new technologies being phased in to control the production of diesel emissions. The exhaust gas recirculation system, E.G.R., and the diesel particulate filter, D.P.F., are both designed to mitigate the production of harmful emissions.A study performed by the Chonbuk National University concluded that a B30 biodiesel blend reduced carbon monoxide emissions by approximately 83% and particulate matter emissions by roughly 33%. NOx emissions, however, were found to increase without the application of an E.G.R. system. The study also concluded that, with E.G.R, a B20 biodiesel blend considerably reduced the emissions of the engine. Additionally, analysis by the California Air Resources Board found that biodiesel had the lowest carbon emissions of the fuels tested, those being ultra-low-sulfur diesel, gasoline, corn-based ethanol, compressed natural gas, and five types of biodiesel from varying feedstocks. Their conclusions also showed great variance in carbon emissions of biodiesel based on the feedstock used. Of soy, tallow, canola, corn, and used cooking oil, soy showed the highest carbon emissions, while used cooking oil produced the lowest.While studying the effect of biodiesel on a D.P.F. it was found that though the presence of sodium and potassium carbonates aided in the catalytic conversion of ash, as the diesel particulates are catalyzed, they may congregate inside the D.P.F. and so interfere with the clearances of the filter. This may cause the filter to clog and interfere with the regeneration process. In a study on the impact of E.G.R. rates with blends of jathropa biodiesel it was shown that there was a decrease in fuel efficiency and torque output due to the use of biodiesel on a diesel engine designed with an E.G.R. system. It was found that CO and CO2 emissions increased with an increase in exhaust gas recirculation but NOx levels decreased. The opacity level of the jathropa blends was in an acceptable range, where traditional diesel was out of acceptable standards. It was shown that a decrease in Nox emissions could be obtained with an E.G.R. system. This study showed an advantage over traditional diesel within a certain operating range of the E.G.R. system. Currently blended biodiesel fuels (B5 and B20) are being used in many heavy-duty vehicles especially transit buses in US cities. Characterization of exhaust emissions showed significant emission reductions compared to regular diesel. 生物柴油的大量使用會讓許多原本生產食品的農地改種植經濟作物,很可能造成糧價上漲,威脅貧窮人口:而開墾新的農地則會破壞生態,而一些研究顯示,開墾新農地所製造的二氧化碳可以提供這塊農地上的作物吸收數十年,換句話說就是在環保上不值得。可能避免負面效應的方法是採用痲瘋樹提供油脂(痲瘋樹生產的油脂有毒、不可食用),痲瘋樹不但產油效率佳,而且可以在貧瘠缺水的環境生存,換句話說就是可以利用無法種植作物的土地。但有些人認為就算是採用具有類似痲瘋樹特性的植物生產生質柴油,還是有降低糧食生產的可能性,因為有些第三世界國家的農民會在經濟利益的驅使下,將原本用來種植作物的土地給拿來改種痲瘋樹。另一種可行方案是種植辣木。利用廢棄物(例如廢油)生產生物柴油幾乎無環保及道德上的缺點;還可以減少商人使用回鍋油及地溝油的誘因。但是回收廢油及廢油內部不純物仍然是問題。未來可能利用藻類(如海藻)生產生質柴油,以增加生質能源效率,和減輕生質能源可能對農產品價格的影響。但除了技術上還需突破外,由於生產的藻類很可能是基因改造品種,因此預防這些藻類混入生態系統也是個課題。Biodiesel may contain small but problematic quantities of water. Although it is only slightly miscible with water it is hygroscopic. One of the reasons biodiesel can absorb water is the persistence of mono and diglycerides left over from an incomplete reaction. These molecules can act as an emulsifier, allowing water to mix with the biodiesel. In addition, there may be water that is residual to processing or resulting from storage tank condensation. The presence of water is a problem because:Water reduces the heat of fuel combustion, causing smoke, harder starting, and reduced power.Water causes corrosion of fuel system components (pumps, fuel lines, etc.)Microbes in water cause the paper-element filters in the system to rot and fail, causing failure of the fuel pump due to ingestion of large particles.Water freezes to form ice crystals that provide sites for nucleation, accelerating gelling of the fuel.Water causes pitting in pistons.Previously, the amount of water contaminating biodiesel has been difficult to measure by taking samples, since water and oil separate. However, it is now possible to measure the water content using water-in-oil sensors.Water contamination is also a potential problem when using certain chemical catalysts involved in the production process, substantially reducing catalytic efficiency of base (high pH) catalysts such as potassium hydroxide. However, the super-critical methanol production methodology, whereby the transesterification process of oil feedstock and methanol is effectuated under high temperature and pressure, has been shown to be largely unaffected by the presence of water contamination during the production phase.空氣汙染和大氣問題引起全球重視。根據IPCC預計從1990年到2100年全球氣溫將升高1.4℃—5.8℃,一系列問題使得全球各國不斷加強對溫室氣體排放的管控。而生物能源可再生、汙染小,是燃料領域化石能源的主要替代產品。全球運輸領域的能源消耗約佔全球能源消耗的32%,而道路運輸約佔全球運輸能源消耗的75%,是主要的能源消耗領域。而目前,隨著全球化石能源產業鏈的持續發展,在運輸領域,97%的消耗依然依賴非可再生資源。而交通運輸領域大量依賴非可再生資源,使得運輸部門成為主要的碳排放領域,佔整體碳排放量26%。為了應對全球氣候問題,無論是發達國家還是發展中國家,開始逐步出臺各類政策及舉措控制二氧化碳排放,而作為主要的碳排放領域,交通運輸部門成為各個國家著力布局監管控制的重要方向。生物柴油成為交通運輸部門實現碳減排的主流方向之一,主要用於動力燃料和生物基材料領域。生物柴油來源多樣,各個地區可以根據不同的情況擇優選擇原料,同時生物柴油與化石燃料性質相近,使用過程中無需對原用的柴油引擎、加油設備、儲存設備和保養設備進行改動,降低了生物柴油的生產門檻和推廣門檻。同時,生物柴油與化石柴油相比,不含對環境造成汙染的芳香族化合物,具有良好的生物降解特性。Biodiesel is commonly produced by the transesterification of the vegetable oil or animal fat feedstock. There are several methods for carrying out this transesterification reaction including the common batch process, supercritical processes, ultrasonic methods, and even microwave methods.Chemically, transesterified biodiesel comprises a mix of mono-alkyl esters of long chain fatty acids. The most common form uses methanol (converted to sodium methoxide) to produce methyl esters (commonly referred to as Fatty Acid Methyl Ester - FAME) as it is the cheapest alcohol available, though ethanol can be used to produce an ethyl ester (commonly referred to as Fatty Acid Ethyl Ester - FAEE) biodiesel and higher alcohols such as isopropanol and butanol have also been used. Using alcohols of higher molecular weights improves the cold flow properties of the resulting ester, at the cost of a less efficient transesterification reaction. A lipid transesterification production process is used to convert the base oil to the desired esters. Any free fatty acids (FFAs) in the base oil are either converted to soap and removed from the process, or they are esterified (yielding more biodiesel) using an acidic catalyst. After this processing, unlike straight vegetable oil, biodiesel has combustion properties very similar to those of petroleum diesel, and can replace it in most current uses.The methanol used in most biodiesel production processes is made using fossil fuel inputs. However, there are sources of renewable methanol made using carbon dioxide or biomass as feedstock, making their production processes free of fossil fuels.A by-product of the transesterification process is the production of glycerol. For every 1 tonne of biodiesel that is manufactured, 100 kg of glycerol are produced. Originally, there was a valuable market for the glycerol, which assisted the economics of the process as a whole. However, with the increase in global biodiesel production, the market price for this crude glycerol (containing 20% water and catalyst residues) has crashed. Research is being conducted globally to use this glycerol as a chemical building block (see chemical intermediate under Wikipedia article "Glycerol"). One initiative in the UK is The Glycerol Challenge.Usually this crude glycerol has to be purified, typically by performing vacuum distillation. This is rather energy intensive. The refined glycerol (98%+ purity) can then be utilised directly, or converted into other products. The following announcements were made in 2007: A joint venture of Ashland Inc. and Cargill announced plans to make propylene glycol in Europe from glycerol and Dow Chemical announced similar plans for North America. Dow also plans to build a plant in China to make epichlorhydrin from glycerol. Epichlorhydrin is a raw material for epoxy resins.
Production levelsIn 2007, biodiesel production capacity was growing rapidly, with an average annual growth rate from 2002-06 of over 40%. For the year 2006, the latest for which actual production figures could be obtained, total world biodiesel production was about 5-6 million tonnes, with 4.9 million tonnes processed in Europe (of which 2.7 million tonnes was from Germany) and most of the rest from the USA. In 2008 production in Europe alone had risen to 7.8 million tonnes. In July 2009, a duty was added to American imported biodiesel in the European Union in order to balance the competition from European, especially German producers. The capacity for 2008 in Europe totalled 16 million tonnes. This compares with a total demand for diesel in the US and Europe of approximately 490 million tonnes (147 billion gallons). Total world production of vegetable oil for all purposes in 2005/06 was about 110 million tonnes, with about 34 million tonnes each of palm oil and soybean oil.US biodiesel production in 2011 brought the industry to a new milestone. Under the EPA Renewable Fuel Standard, targets have been implemented for the biodiesel production plants in order to monitor and document production levels in comparison to total demand. According to the year-end data released by the EPA, biodiesel production in 2011 reached more than 1 billion gallons. This production number far exceeded the 800 million gallon target set by the EPA. The projected production for 2020 is nearly 12 billion gallons.Biodiesel feedstocksA variety of oils can be used to produce biodiesel. These include:Virgin oil feedstock – rapeseed and soybean oils are most commonly used, soybean oil accounting for about half of U.S. production. It also can be obtained from Pongamia, field pennycress and jatropha and other crops such as mustard, jojoba, flax, sunflower, palm oil, coconut and hemp (see list of vegetable oils for biofuel for more information);Waste vegetable oil (WVO);Animal fats including tallow, lard, yellow grease, chicken fat, and the by-products of the production of Omega-3 fatty acids from fish oil.Algae, which can be grown using waste materials such as sewage and without displacing land currently used for food production.Oil from halophytes such as Salicornia bigelovii, which can be grown using saltwater in coastal areas where conventional crops cannot be grown, with yields equal to the yields of soybeans and other oilseeds grown using freshwater irrigationSewage Sludge - The sewage-to-biofuel field is attracting interest from major companies like Waste Management and startups like InfoSpi, which are betting that renewable sewage biodiesel can become competitive with petroleum diesel on price.Many advocates suggest that waste vegetable oil is the best source of oil to produce biodiesel, but since the available supply is drastically less than the amount of petroleum-based fuel that is burned for transportation and home heating in the world, this local solution could not scale to the current rate of consumption.Animal fats are a by-product of meat production and cooking. Although it would not be efficient to raise animals (or catch fish) simply for their fat, use of the by-product adds value to the livestock industry (hogs, cattle, poultry). Today, multi-feedstock biodiesel facilities are producing high quality animal-fat based biodiesel. Currently, a 5-million dollar plant is being built in the USA, with the intent of producing 11.4 million litres (3 million gallons) biodiesel from some of the estimated 1 billion kg (2.2 billion pounds) of chicken fat produced annually at the local Tyson poultry plant. Similarly, some small-scale biodiesel factories use waste fish oil as feedstock. An EU-funded project (ENERFISH) suggests that at a Vietnamese plant to produce biodiesel from catfish (basa, also known as pangasius), an output of 13 tons/day of biodiesel can be produced from 81 tons of fish waste (in turn resulting from 130 tons of fish). This project utilises the biodiesel to fuel a CHP unit in the fish processing plant, mainly to power the fish freezing plant.Quantity of feedstocks requiredCurrent worldwide production of vegetable oil and animal fat is not sufficient to replace liquid fossil fuel use. Furthermore, some object to the vast amount of farming and the resulting fertilization, pesticide use, and land use conversion that would be needed to produce the additional vegetable oil. The estimated transportation diesel fuel and home heating oil used in the United States is about 160 million tons (350 billion pounds) according to the Energy Information Administration, US Department of Energy. In the United States, estimated production of vegetable oil for all uses is about 11 million tons (24 billion pounds) and estimated production of animal fat is 5.3 million tonnes (12 billion pounds).If the entire arable land area of the USA (470 million acres, or 1.9 million square kilometers) were devoted to biodiesel production from soy, this would just about provide the 160 million tonnes required (assuming an optimistic 98 US gal/acre of biodiesel). This land area could in principle be reduced significantly using algae, if the obstacles can be overcome. The US DOE estimates that if algae fuel replaced all the petroleum fuel in the United States, it would require 15,000 square miles (39,000 square kilometers), which is a few thousand square miles larger than Maryland, or 30% greater than the area of Belgium, assuming a yield of 140 tonnes/hectare (15,000 US gal/acre). Given a more realistic yield of 36 tonnes/hectare (3834 US gal/acre) the area required is about 152,000 square kilometers, or roughly equal to that of the state of Georgia or of England and Wales. The advantages of algae are that it can be grown on non-arable land such as deserts or in marine environments, and the potential oil yields are much higher than from plants.YieldFeedstock yield efficiency per unit area affects the feasibility of ramping up production to the huge industrial levels required to power a significant percentage of vehicles.Algae fuel yields have not yet been accurately determined, but DOE is reported as saying that algae yield 30 times more energy per acre than land crops such as soybeans. Yields of 36 tonnes/hectare are considered practical by Ami Ben-Amotz of the Institute of Oceanography in Haifa, who has been farming Algae commercially for over 20 years.Jatropha has been cited as a high-yield source of biodiesel but yields are highly dependent on climatic and soil conditions. The estimates at the low end put the yield at about 200 US gal/acre (1.5-2 tonnes per hectare) per crop; in more favorable climates two or more crops per year have been achieved. It is grown in the Philippines, Mali and India, is drought-resistant, and can share space with other cash crops such as coffee, sugar, fruits and vegetables. It is well-suited to semi-arid lands and can contribute to slow down desertification, according to its advocates.Efficiency and economic argumentsAccording to a study by Drs. Van Dyne and Raymer for the Tennessee Valley Authority, the average US farm consumes fuel at the rate of 82 litres per hectare (8.75 US gal/acre) of land to produce one crop. However, average crops of rapeseed produce oil at an average rate of 1,029 L/ha (110 US gal/acre), and high-yield rapeseed fields produce about 1,356 L/ha (145 US gal/acre). The ratio of input to output in these cases is roughly 1:12.5 and 1:16.5. Photosynthesis is known to have an efficiency rate of about 3-6% of total solar radiation and if the entire mass of a crop is utilized for energy production, the overall efficiency of this chain is currently about 1% While this may compare unfavorably to solar cells combined with an electric drive train, biodiesel is less costly to deploy (solar cells cost approximately US$250 per square meter) and transport (electric vehicles require batteries which currently have a much lower energy density than liquid fuels). A 2005 study found that biodiesel production using soybeans required 27% more fossil energy than the biodiesel produced and 118% more energy using sunflowers.However, these statistics by themselves are not enough to show whether such a change makes economic sense. Additional factors must be taken into account, such as: the fuel equivalent of the energy required for processing, the yield of fuel from raw oil, the return on cultivating food, the effect biodiesel will have on food prices and the relative cost of biodiesel versus petrodiesel, water pollution from farm run-off, soil depletion, and the externalized costs of political and military interference in oil-producing countries intended to control the price of petrodiesel.The debate over the energy balance of biodiesel is ongoing. Transitioning fully to biofuels could require immense tracts of land if traditional food crops are used (although non food crops can be utilized). The problem would be especially severe for nations with large economies, since energy consumption scales with economic output.If using only traditional food plants, most such nations do not have sufficient arable land to produce biofuel for the nation's vehicles. Nations with smaller economies (hence less energy consumption) and more arable land may be in better situations, although many regions cannot afford to divert land away from food production.For third world countries, biodiesel sources that use marginal land could make more sense; e.g., pongam oiltreenuts grown along roads or jatropha grown along rail lines.In tropical regions, such as Malaysia and Indonesia, plants that produce palm oil are being planted at a rapid pace to supply growing biodiesel demand in Europe and other markets. Scientists have shown that the removal of rainforest for palm plantations is not ecologically sound since the expansion of oil palm plantations poses a threat to natural rainforest and biodiversity.It has been estimated in Germany that palm oil biodiesel has less than one third of the production costs of rapeseed biodiesel. The direct source of the energy content of biodiesel is solar energy captured by plants during photosynthesis. Regarding the positive energy balance of biodiesel:When straw was left in the field, biodiesel production was strongly energy positive, yielding 1 GJ biodiesel for every 0.561 GJ of energy input (a yield/cost ratio of 1.78).When straw was burned as fuel and oilseed rapemeal was used as a fertilizer, the yield/cost ratio for biodiesel production was even better (3.71). In other words, for every unit of energy input to produce biodiesel, the output was 3.71 units (the difference of 2.71 units would be from solar energy).由於不同國家具有明顯的資源文化差異和作物差異,因而全球生物柴油相對集中,且生產原料差異明顯。全球棕櫚油生產高度集中,印尼、馬來主要以棕櫚油為原料生產生物柴油,全球大豆生產高度集中,巴西、美國、阿根廷是全球主要的大豆生產國,而美國和巴西以大豆為原料生產的生物柴油多數以自用為主,德國、法國也逐步成為歐洲生物柴油主要的生產國。「不與人爭糧」的政策要求使得國內難以形成以植物油作為直接原料的生物柴油產業鏈。不同於全球主要的生物柴油生產國,我國人口基數大,對於糧食及油品的需求量巨大,在國內油品尚未自給狀態下,我國難以形成以傳統油料為原料生產生物柴油產業鏈。但我國長期存在大量的廢棄油脂潛在資源,具有較為充足的原料市場。雖然我國食用油尚不能自給,不能形成以傳統油料作為原料生產生物柴油產業鏈,但是我國人口眾多,地域遼闊,具有多樣的飲食文化,長期食用油消費巨大,存在大量的廢棄油脂。政策持續監管地溝油流向問題,帶動廢棄油脂產業鏈逐步正規化發展。近年來,國家大力打擊地溝油回流餐桌等行為,對廢棄油脂回收再利用產業鏈加強監管,不斷提升追蹤、監察力度,在整治不法行為的同時,不斷引導國內廢棄油脂產業鏈逐步像正規化方向發展。同時在環境監管趨嚴下,垃圾分類持續推行,廢棄油脂的有效應用逐步提升。隨著政府對於環保要求的逐步提升,廢棄油脂作為餐飲垃圾未進行有效處理極易汙染周邊環境。我國在提升對原有廢舊油脂處理的監管基礎上,進一步推動餐館等主要廢棄油脂產生源頭進行隔油池等廚餘垃圾處理方式,在全國逐步推行垃圾分類,在治理環境汙染,提高垃圾處理效率的同時,創造廢舊產品的再生價值,從而逐步提升廢棄油脂收集和有效利用。廢棄油脂回收再利用環節相對分散,生物柴油產能利用不足。由於收集環節具有一定的特殊性,目前我國廢棄油脂的撈取和收集以個體經營為主,廢舊油脂來源較廣,產品回收渠道要求收集工作仍以人工收集為主,因而回收環節相對分散;而同時由於前期的不規範運行,下遊加工技術參差不齊,產能利用率低。隨著我國生物柴油產業鏈發展的逐步完善,生物柴油作為正規化渠道發展有望帶動原料供應及產品加工環節的逐步有序化發展,近幾年來我國生物柴油產能利用率呈現波動上行狀態。多國家提升生物柴油添加比例要求,帶動生物柴油海外需求大幅提升。隨著全球對於能源及環境氣候問題的重視,眾多國家都相繼開始推行可再生能源使用以減少碳排放,其中生物燃料的推行是主要方向之一。
伴隨添加劑比例的持續提升,歐洲生物柴油需求量仍將有進一步的增長。全球來看,歐美等發達地區對於生物能源的推廣使用相對領先,其中在歐盟整體政策的指導下,歐洲各國也先後提出了生物柴油強制摻混比例要求,隨著時間的逐步推移,眾多國家的摻混比例要求也在不斷提升,從而帶動生物柴油需求量的持續提升。交通部門燃料進行供給端調油銷售,推動產品需求落地。相比於一般的工業產品,燃料尤其運輸部門燃料供給渠道相對集中,由於產業鏈前段具有明顯的資源稟賦屬性和進入壁壘,因而燃料供給品牌和渠道一般掌握在大型跨國企業或者國家能源公司手中,未來預期生物柴油需求有望快速增長。歐洲生物柴油供應缺口有望逐步放大,帶動生物柴油進口需求提升。歐洲作為全球較為領先的生物柴油推廣使用地區,產業鏈布局相對完善。2019年歐洲淨進口生物柴油約30億升,進口量有明顯提升,預期伴隨著生物柴油缺口的放大,歐洲進口生產柴油需求還將進一步提升,為我國企業出口以廢棄油脂生產的生物提供充足的市場空間。
印尼、馬來持續提升生物柴油添加比例,未來有望成為以棕櫚油為原料生產生物柴油的特殊應用市場。為了保證國內相關產業的發展,印尼等國家不斷出臺相關生物柴油添加政策,至2019年,印尼已經將交通運輸領域的生物柴油添加比例提升至30%,並給予大量補貼,成為目前全球添加生物柴油比例最高國家之一,隨著其本國添加比例的進一步提升,印尼、馬來可能成為以棕櫚油生產生物柴油應用的主要市場。歐盟生物柴油標準要求高於國內,高品質達標產品有望獲得更高的盈利空間。歐美等地區的生物柴油標準主要依據以植物油為原料的標準確定,對硫、磷、酸值、甘油酯等指標要求嚴格,而我國主要以廢棄油脂為原料,來源複雜,雜質含量差異大,因而需要實現有效的技術突破才能達到高標準的產品要求。過去我國雖然常以廢舊油脂作為原料,但是規模化生產高品質生物柴油,因而我國生物柴油多以自用為主,產品出口較少。伴隨著國內生物柴油技術水平的突破,國內生物柴油企業開始出口海外,逐步可以獲得更高的盈利空間。近年來,歐洲持續積極推薦碳減排政策實施,一方面要求生物能源添加比例,另一方面也在實際執行碳減排考核,依據可持續認證機構的審計,計算不同產品的碳減排值,以達到考核要求。而管理優質的企業獲得ISCC可持續認證的審計,獲得高碳減排評分可以提升產品的環保附加值,在進行產品銷售中有望獲得更高的產品溢價,從而藉助企業的綜合管理實力和技術水平上實現盈利能力的提升。規模化企業有望建立自身的產品話語權,形成發展的良性循環。多年來,我國有多家從事生物柴油的生產企業,整體產能較高,但是較為分散,受制於企業管理和技術水平等多重因素影響,行業整體產能利用率較低。隨著幾年的發展,規模化企業的技術水平獲得不斷提升,能夠規模化提供高品質產品的企業逐步提升產品的盈利空間,從而為公司提供持續進行技術升級和產能擴充的資金支持,逐步形成發展的良性循環;同時規模化企業批量供應產品,一方面獲得產品生產的規模化效應,降低生產成本,同時規模化供貨也為公司同下遊需求客戶協商定價形成了良好的基礎,不斷優化公司在行業中的競爭優勢。
碳減排推動生物能源應用,政策帶動生物柴油市場快速發展Multiple economic studies have been performed regarding the economic impact of biodiesel production. One study, commissioned by the National Biodiesel Board, reported the 2011 production of biodiesel supported 39,027 jobs and more than $2.1 billion in household income. The growth in biodiesel also helps significantly increase GDP. In 2011, biodiesel created more than $3 billion in GDP. Judging by the continued growth in the Renewable Fuel Standard and the extension of the biodiesel tax incentive, the number of jobs can increase to 50,725, $2.7 billion in income, and reaching $5 billion in GDP by 2012 and 2013.空氣汙染和大氣問題引起全球重視。進入21世紀,在傳統的環境問題治理基礎上,大氣問題也不斷引起重視,由於溫室氣體的排放,全球變暖正在持續,根據IPCC預計從1990年到2100年全球氣溫將升高1.4℃—5.8℃。多年來全球碳排放總量持續提升,溫室效應帶來的冰川融化,海平面上升等一系列問題使得全球各國不斷加強對溫室氣體排放的管控。而生物能源可再生、汙染小,是燃料領域化石能源的主要替代產品。
交通運輸領域的成為重點監管領域 。全球運輸領域的能源消耗約佔全球能源消耗的32%,而道路運輸約佔全球運輸能源消耗的75%,是主要的能源消耗領域。而目前,隨著全球化石能源產業鏈的持續發展,在運輸領域,97%的消耗依然依賴非可再生資源。而交通運輸領域大量依賴非可再生資源,是的運輸部門成為主要的碳排放領域,佔整體碳排放量26%。1997年,為了應對全球氣候問題,《京都議定書》通過,並於2005年開始生效,無論是發達國家還是發展中國家,開始逐步出臺各類政策及舉措控制二氧化碳排放,而作為主要的碳排放領域,交通運輸部門成為各個國家著力布監管控制的重要方向。
歐盟大力推動生物能源應用,生物柴油市場獲得快速發展歐盟持續出臺政策推動碳減排。自《京都議定書》後,歐盟加緊落實碳減排問題,大力發展可再生能源,2003年,歐洲開始批准發展和使用生物燃料,並於2006年制定了《歐盟生物燃料戰略》,推動生物燃料的添加使用。2009年歐盟先後出臺《可再生能源指令》及修改版,要求2020年及2030年可再生能源消費比例分別達到27%和32%,其中可再生燃料在運輸部門的佔比需達到10%和14%,通過持續的政策推動,歐盟的碳減排行動持續推進,在全球成功形成示範案例。
生物柴油成為交通運輸部門實現碳減排的主流方向之一。生物柴油是以植物油(如菜籽油、玉米油、大豆油)、動物油(如牛油、豬油)、廢棄油脂(如地溝油)或微生物油脂與甲醇或乙醇經酯轉化而形成的脂肪酸甲酯或乙酯,為國際公認的可再生清潔能源,主要用於動力燃料和生物基材料領域。生物柴油來源多樣,各個地區可以根據不同的情況擇優選擇原料,同時生物柴油與化石燃料性質相近,使用過程中無需對原用的柴油引擎、加油設備、儲存設備和保養設備進行改動,降低了生物柴油的生產門檻和推廣門檻。
生物柴油不增加二氧化碳排放,同時可以有效降低柴油機尾氣汙染物的排放。生物柴油的主要成分是碳水化合物,硫、氮等有害雜質很少,含氧量較高且更易充分燃燒,因而生物柴油在不新增溫室氣體排放量的基礎上,還可以有效降低柴油發動機尾氣顆粒物、一氧化碳、碳氫化合物、硫化物等汙染物排放,而從產業鏈加工角度看,生物柴油與化石柴油相比,不含對環境造成汙染的芳香族化合物,具有良好的生物降解特性。
生物柴油原料區域性差異明顯,國內廢油產業逐步獲得發展One of the main drivers for adoption of biodiesel is energy security. This means that a nation's dependence on oil is reduced, and substituted with use of locally available sources, such as coal, gas, or renewable sources. Thus a country can benefit from adoption of biofuels, without a reduction in greenhouse gas emissions. While the total energy balance is debated, it is clear that the dependence on oil is reduced. One example is the energy used to manufacture fertilizers, which could come from a variety of sources other than petroleum. The US National Renewable Energy Laboratory (NREL) states that energy security is the number one driving force behind the US biofuels programme, and a White House "Energy Security for the 21st Century" paper makes it clear that energy security is a major reason for promoting biodiesel. The EU commission president, Jose Manuel Barroso, speaking at a recent EU biofuels conference, stressed that properly managed biofuels have the potential to reinforce the EU's security of supply through diversification of energy sources.Many countries around the world are involved in the growing use and production of biofuels, such as
biodiesel, as an alternative energy source to
fossil fuels and oil. To foster the biofuel industry, governments have implemented legislations and laws as incentives to reduce oil dependency and to increase the use of renewable energies. Many countries have their own independent policies regarding the taxation and rebate of biodiesel use, import, and production.It was required by the Canadian Environmental Protection Act Bill C-33 that by the year 2010, gasoline contained 5% renewable content and that by 2013, diesel and heating oil contained 2% renewable content. The EcoENERGY for Biofuels Program subsidized the production of biodiesel, among other biofuels, via an incentive rate of CAN$0.20 per liter from 2008 to 2010. A decrease of $0.04 will be applied every year following, until the incentive rate reaches $0.06 in 2016. Individual provinces also have specific legislative measures in regards to biofuel use and production.The Volumetric Ethanol Excise Tax Credit (VEETC) was the main source of financial support for biofuels, but was scheduled to expire in 2010. Through this act, biodiesel production guaranteed a tax credit of US$1 per gallon produced from virgin oils, and $0.50 per gallon made from recycled oils. Currently soybean oil is being used to produce soybean biodiesel for many commercial purposes such as blending fuel for transportation sectors.The European Union is the greatest producer of biodiesel, with France and Germany being the top producers. To increase the use of biodiesel, there exist policies requiring the blending of biodiesel into fuels, including penalties if those rates are not reached. In France, the goal was to reach 10% integration but plans for that stopped in 2010. As an incentive for the European Union countries to continue the production of the biofuel, there are tax rebates for specific quotas of biofuel produced. In Germany, the minimum percentage of biodiesel in transport diesel is set at 7% so called "B7".
生物柴油原料主要分為三大類,呈現明顯的區域性差異。多年來,伴隨著生物柴油的推廣使用,全球的生物柴油產量持續提升,2019年,全球共生產生物柴油474億升,同比增長13%, 10年間生物柴油產量的複合增速達到了10.3%。由於不同國家具有明顯的資源文化差異和作物差異,因而全球生物柴油相對集中,且生產原料差異明顯。2019年,全球前五大生物柴油生產國分別為印尼(以棕櫚油為主)、美國(以大豆為主)、巴西(以大豆為主)、德國(以菜籽為主)和法國(以菜籽為主),合計佔比達到57%。
全球棕櫚油生產高度集中,印尼、馬來主要以棕櫚油為原料生產生物柴油。由於油棕櫚生長及產油量對溫度、降雨量等要求較高,在全球分布較為集中,作為三大植物油的源頭,棕櫚油的生產高度集中,其中印度尼西亞和馬來西亞合計產量佔比高達84%,因而印尼和馬來成為全球主要的棕櫚油生產及出口基地,由於棕櫚油資源豐富,印尼、馬來以棕櫚油為原料大量生產生物柴油,成為全球主要供給生物柴油的地區。
印尼及馬來成為全球主要的生物柴油機原料供應基地。印尼、馬來棕櫚樹種植面積不斷擴展,棕櫚油產量持續提升,除個別年份氣候等因素外,以棕櫚油生產生物柴油產量有了大幅增長,在滿足自身生物柴油需求的基礎上,印尼、馬來大量出口棕櫚油及棕櫚油生產的生物柴油,是全球主要的生物柴油及原料出口國。2019年歐盟使用約450萬噸棕櫚油生產生物柴油,其中約四分之三的原料來源於印尼及馬來。全球大豆生產高度集中,巴西、美國、阿根廷是全球主要的大豆生產國。美國、巴西及阿根廷經過多年的發展農業機械化程度較高,多年培育推廣轉基因大豆種植,是主要的大豆種植國家,2019年全球約有8成以上大大豆產量集中於這個三個國家。美國、巴西大豆原料充裕,主要以大豆為原料生產生物柴油。美國、巴西大豆作為油料供應充足,因而主要以大豆作為原料生產生物柴油。大豆提煉油脂後會有大量的豆粕等副產品,含有高蛋白,是良好的飼料來源,因而美國、巴西在滿足自身需求後,主要以大豆產品出口為主。而美國和巴西以大豆為原料生產的生物柴油多數以自用為主,較少部分用於出口,形成了自給自足的原料、產品供應體系。德國、法國主要以菜籽油為原料生產生物柴油。隨著歐洲大力推行可再生能源,德國、法國積極推廣使用以菜籽油為原料的生物柴油,並對農民種植油菜籽給予補貼,隨著油菜籽的種植提升,以菜籽油為原料的生物柴油已經佔據了主要的可再生能源市場。而德國、法國也逐步成為歐洲生物柴油主要的生產國。
「不與人爭糧」的政策要求使得國內難以形成以植物油作為直接原料的生物柴油產業鏈。不同於全球主要的生物柴油生產國,我國人口基數大,對於糧食及油品的需求量巨大,2018/19年,我國食用油產量2545萬噸,仍有近800萬噸的食用油缺口尚未自給,而在我國生產的食用油中,作為主要的油料的大豆仍長期依賴進口,2019年我國進口大豆8851萬噸,產品自給率不足2成。國內油品尚未自給狀態下,我國難以形成以傳統油料為原料生產生物柴油產業鏈。
廢棄油脂處理行業逐步規範,原料供應提升帶動我國產業鏈發展我國長期存在大量的廢棄油脂潛在資源,具有較為充足的原料市場。雖然我國食用油尚不能自給,不能形成以傳統油料作為原料生產生物柴油產業鏈,但是我國人口眾多,地域遼闊,具有多樣的飲食文化,長期食用油消費巨大,存在大量的廢棄油脂。根據國家糧油信息中心數據,2018 年我國食用植物油消費量為3,190 萬噸,以廢油脂產生量約佔食用油總消費量的30%估算,由食用油產生的廢油脂將約為900 萬噸/年;加上油脂精加工後以及各類肉及肉製品加工產生廢油脂超過100 萬噸/年,以此我國每年產生廢油脂約為1,000 萬噸,可以為廢棄油脂生產生物柴油提供原料。
政策持續監管地溝油流向問題,帶動廢棄油脂產業鏈逐步正規化發展。在早期,國家監管尚未完善,常有不法商販藉助廢棄油脂簡單加工後回流餐桌及飼料領域,以謀取利益。近年來,國家大力打擊地溝油回流餐桌等行為,對廢棄油脂回收再利用產業鏈加強監管,不斷提升追蹤、監察力度,在整治不法行為的同時,不斷引導國內廢棄油脂產業鏈逐步像正規化方向發展。目前政府機構對廢棄油脂撈取收集、純化處理、產品加工進行持續的去向追蹤,促使廢棄油脂逐步向正規化應用導入。
環境監管趨嚴,垃圾分類持續推行,廢棄油脂的有效應用逐步提升。隨著政府對於環保要求的逐步提升,廢棄油脂作為餐飲垃圾未進行有效處理極易汙染周邊環境。我國在提升對原有廢舊油脂處理的監管基礎上,進一步推動餐館等主要廢棄油脂產生源頭進行隔油池等廚餘垃圾處理方式,在全國逐步推行垃圾分類,在治理環境汙染,提高垃圾處理效率的同時,創造廢舊產品的再生價值,從而逐步提升廢棄油脂收集和有效利用。
廢舊油脂製造生物柴油產業不斷發展,我國廢棄油脂產業鏈附加值有望逐步提升。我國的生物柴油生產基本以廢舊油脂為主,2019年,我國大約使用90多萬噸廢舊油脂生產生物柴油,還有大量廢舊油脂未獲得有效利用或者進行出口,根據歐盟數據統計,歐盟廢棄油脂原料進口中約有1/3來自中國。隨著我國對於廢棄油脂利用的加深,產業鏈附加值將有望逐步提升,逐步形成成熟的終端產品供應體系。
廢棄油脂回收再利用環節相對分散,生物柴油產能利用不足。由於收集環節具有一定的特殊性,目前我國廢棄油脂的撈取和收集以個體經營為主,廢舊油脂來源較廣,產品回收渠道要求收集工作仍以人工收集為主,因而回收環節相對分散;而同時由於前期的不規範運行,下遊加工技術參差不齊,產能利用率低。隨著我國生物柴油產業鏈發展的逐步完善,生物柴油作為正規化渠道發展有望帶動原料供應及產品加工環節的逐步有序化發展,近幾年來我國生物柴油產能利用率呈現波動上行狀態。
我國生物柴油生產技術水平升級,生物柴油產品出口提升。在我國發展廢舊油脂生產生物柴油早期,國內產品主要以油品加工純化為主,用於國內鍋爐燃料等領域,而伴隨著下遊生物柴油生產技術的升級,我國的生物柴油可以逐步滿足國外標準要求,實現產品出口,2019年根據USDA數據,我國生物柴油出口量提升至7.5億升,5年複合增速為70%以上。通過產品出口,我國的廢舊油脂產品附加值有望獲得進一步提升,從而逐步帶動行業快速發展。
歐洲市場需求空間持續提升,規模企業有望獲得持續發展The surge of interest in biodiesels has highlighted a number of environmental effects associated with its use. These potentially include reductions in greenhouse gas emissions, deforestation, pollution and the rate of biodegradation.According to the EPA's Renewable Fuel Standards Program Regulatory Impact Analysis, released in February 2010, biodiesel from soy oil results, on average, in a 57% reduction in greenhouse gases compared to petroleum diesel, and biodiesel produced from waste grease results in an 86% reduction. See chapter 2.6 of the EPA report for more detailed information.However, environmental organizations, for example, Rainforest Rescue and Greenpeace, criticize the cultivation of plants used for biodiesel production, e.g., oil palms, soybeans and sugar cane. They say the deforestation of rainforests exacerbates climate change and that sensitive ecosystems are destroyed to clear land for oil palm, soybean and sugar cane plantations. Moreover, that biofuels contribute to world hunger, seeing as arable land is no longer used for growing foods. The Environmental Protection Agency(EPA) published data in January 2012, showing that biofuels made from palm oil won’t count towards the nation’s renewable fuels mandate as they are not climate-friendly. Environmentalists welcome the conclusion because the growth of oil palm plantations has driven tropical deforestation, for example, in Indonesia and Malaysia.
多國家提升生物柴油添加比例要求,帶動生物柴油海外需求大幅提升。隨著全球對於能源及環境氣候問題的重視,眾多國家都相繼開始推行可再生能源使用以減少碳排放,其中生物燃料的推行是主要方向之一。至2019年底,全球有超過70個國家對傳統生物燃料有混合授權,超過9個國家對生物燃料有授權或激勵計劃,超過24個國家對先進生物燃料有未來目標。伴隨添加劑比例的持續提升,歐洲生物柴油需求量仍將有進一步的增長。全球來看,歐美等發達地區對於生物能源的推廣使用相對領先,其中在歐盟整體政策的指導下,歐洲各國也先後提出了生物柴油強制摻混比例要求,隨著時間的逐步推移,眾多國家的摻混比例要求也在不斷提升,從而帶動生物柴油需求量的持續提升。
交通部門燃料進行供給端調油銷售,推動產品需求落地。相比於一般的工業產品,燃料尤其運輸部門燃料供給渠道相對集中,由於產業鏈前段具有明顯的資源稟賦屬性和進入壁壘,因而燃料供給品牌和渠道一般掌握在大型跨國企業或者國家能源公司手中。生物柴油作為可再生燃料添加至傳統化石燃料中,一般通過供給端採購生物柴油進行配額及油品調節,形成B5、B10、B20、B30等系列產品流入市場。而由於化石燃料尤其是運輸部門燃料供給高度集中,政策出臺能夠針對供給端進行有效監管,推動生物柴油進行合規添加,從而有效推動生物柴油需求穩步落實。2019年,歐洲生物柴油消費量約為174億升,過去5年的複合增速為3.69%,未來伴隨著添加比例在新一階段的進一步升級,預期生物柴油需求有望快速增長。
歐洲生物柴油供應缺口有望逐步放大,帶動生物柴油進口需求提升。歐洲作為全球較為領先的生物柴油推廣使用地區,產業鏈布局相對完善。根據《可再生能源指令》及修改版的要求,到2020年、2030年可再生能源消費比例分別達到27%和32%,其中可再生燃料在運輸部門的佔比需達到10%和14%。隨著歐盟整體生物柴油添加比例的進一步提升,歐洲生物柴油產能將難以滿足燃料添加需求,生物柴油缺口有望進一步放大,帶動歐洲各國將持續進口生物柴油以滿足碳減排計數要求。2019年歐洲淨進口生物柴油約30億升,進口量有明顯提升,預期伴隨著生物柴油缺口的放大,歐洲進口生產柴油需求還將進一步提升,為我國企業出口以廢棄油脂生產的生物提供充足的市場空間。
廢棄油脂制生物柴油,屬廢舊能源再生,享雙倍碳減排計數原則。根據歐盟出臺的《可再生能源指令》,如果生物燃料的原料來源為廢棄物、非食物纖維或木質纖維等,在計算運輸部門生物燃料消費比例時,相比常規生物燃料其使用量遵循雙倍減排計數原則(即使用量若為1 升,計算完成量時為2 升)。伴隨著歐洲各國對大氣問題的重視,在生物能源使用方面也逐步加大力度推廣,多數國家制定了在交通領域添加生物柴油的比例要求。因而在滿足生物柴油添加比例過程中,若添加生物柴油(以廢棄油脂為原料),通過雙倍計數原則,可以節約單位成品油中生物柴油使用量,相比於傳統的化石能源,生物柴油來源及產能有限,且價格明顯較高,從而雙倍碳減排計數原則使得廢舊油脂生產的生物柴油和其他油料制生物柴油之間形成了天然的價格差距。
一代生物燃料摻混比例將受制約,廢棄油脂為原料的產品需求有望獲得大幅提升。在歐洲生物柴油的原料主要來源於菜籽油、棕櫚油和廢棄油脂,其中菜籽油約佔1/3,棕櫚油約佔3成,而廢棄油脂作為原料的佔比不到2成。而根據原料來看,以糖類澱粉等為原料發酵生產的乙醇和以傳統油料種子為原料生產生物柴油都屬於一代生物燃料,而二代生物燃料主要以秸稈等非糧食或者廢棄物為原料,具有更高的環保型和減排能力,相比一代燃料,二代燃料的二氧化碳減排最高可達96%,遠遠高一代生物燃料水平,同時不在額外造成全球的糧食壓力。在歐洲,生物柴油的生產主要來源於菜籽油、棕櫚油以及廢棄油脂,2016年,歐洲出臺第二個可再生能源指令(RED II),要求基於糧食作物的第一代生物燃料的摻混上限要從2021年的7%下降到2030年的3.8%,在2021—2025年第一代生物燃料的摻混上限要逐年減少0.3個百分點,2026—2030年要逐年減少0.4個百分點;第二代生物燃料的摻混下限從2021年的1.5%上調到2030年的6.8%。
生物柴油添加比例的結構性調整為廢棄油脂為原料生產生物柴油產業鏈提供了良好發展機遇,伴隨著整體生物柴油添加比例的提升和一代生物柴油添加比例的下調,以廢棄油脂為原料的生物柴油需求有望加速提升。印尼、馬來持續提升生物柴油添加比例,未來有望成為以棕櫚油為原料生產生物柴油的特殊應用市場。棕櫚油是全球三大植物油,而印尼、馬來佔據了主要市場,棕櫚油產業鏈已經成為兩國主要的支柱產業之一,而受到經濟性的驅使,很多地區都存著砍伐熱帶雨林種植棕櫚樹的現象,因而追溯源頭,並未實現碳減排的作用,因而很多國家及地區並不提倡使用破壞植被種植生產的棕櫚油為原料的生物柴油,因生態破壞和生物柴油添加結構調整,在歐洲等地區棕櫚油為原料生產生物柴油或將受到使用限制。
而為了保證國內相關產業的發展,印尼等國家不斷出臺相關生物柴油添加政策,至2019年,印尼已經將交通運輸領域的生物柴油添加比例提升至30%,並給予大量補貼,成為目前全球添加生物柴油比例最高國家之一,隨著其本國添加比例的進一步提升,印尼、馬來可能成為以棕櫚油生產生物柴油應用的主要市場。
歐盟要求標準嚴格,規模化達標企業有望獲得持續發展空間There is ongoing research into finding more suitable crops and improving oil yield. Other sources are possible including human fecal matter, with Ghana building its first "fecal sludge-fed biodiesel plant." Using the current yields, vast amounts of land and fresh water would be needed to produce enough oil to completely replace fossil fuel usage. It would require twice the land area of the US to be devoted to soybean production, or two-thirds to be devoted to rapeseed production, to meet current US heating and transportation needs.Specially bred mustard varieties can produce reasonably high oil yields and are very useful in crop rotation with cereals, and have the added benefit that the meal leftover after the oil has been pressed out can act as an effective and biodegradable pesticide.The NFESC, with Santa Barbara-based Biodiesel Industries is working to develop biodiesel technologies for the US navy and military, one of the largest diesel fuel users in the world.A group of Spanish developers working for a company called Ecofasa announced a new biofuel made from trash. The fuel is created from general urban waste which is treated by bacteria to produce fatty acids, which can be used to make biodiesel.Another approach that does not require the use of chemical for the production involves the use of genetically modified microbes.
歐盟生物柴油標準要求高於國內,高品質達標產品有望獲得更高的盈利空間。歐美等地區的生物柴油標準主要依據以植物油為原料的標準確定,對硫、磷、酸值、甘油酯等指標要求嚴格,而我國主要以廢棄油脂為原料,來源複雜,雜質含量差異大,因而需要實現有效的技術突破才能達到高標準的產品要求。過去我國雖然常以廢舊油脂作為原料,但是規模化生產高品質生物柴油,因而我國生物柴油多以自用為主,產品出口較少。伴隨著國內生物柴油技術水平的突破,國內生物柴油企業開始出口海外,逐步可以獲得更高的盈利空間。
碳減排考核提升產品環保附加值,有望獲得更高的產品溢價。近年來,歐洲持續積極推薦碳減排政策實施,一方面要求生物能源添加比例,另一方面也在實際執行碳減排考核,依據可持續認證機構的審計,計算不同產品的碳減排值,以達到考核要求。而管理優質的企業獲得ISCC可持續認證的審計,獲得高碳減排評分可以提升產品的環保附加值,在進行產品銷售中有望獲得更高的產品溢價,從而藉助企業的綜合管理實力和技術水平上實現盈利能力的提升。
規模化企業有望建立自身的產品話語權,形成發展的良性循環。多年來,我國有多家從事生物柴油的生產企業,整體產能較高,但是較為分散,受制於企業管理和技術水平等多重因素影響,行業整體產能利用率較低。隨著幾年的發展,規模化企業的技術水平獲得不斷提升,能夠規模化提供高品質產品的企業逐步提升產品的盈利空間,從而為公司提供持續進行技術升級和產能擴充的資金支持,逐步形成發展的良性循環;同時規模化企業批量供應產品,一方面獲得產品生產的規模化效應,降低生產成本,同時規模化供貨也為公司同下遊需求客戶協商定價形成了良好的基礎,不斷優化公司在行業中的競爭優勢。
關註標的——卓越新能:生物柴油領先企業,產業鏈延伸布局生物柴油龍頭企業,多年布局產品逐步打入歐洲市場。公司多年來持續布局生物柴油領域,以廢舊油脂生產生物柴油及相關產品,經過不斷的技術突破和工藝優化,公司廢油脂甲酯轉化率高達98%以上,在提升產品轉化率的基礎上,更是不斷優化產品品質,逐步達到歐盟標準。自2016年開始,公司生物柴油出口佔比不斷提升,通過產品規模化出口歐洲,公司產品營收快速提升,生物柴油的盈利中樞也有較為明顯的提升。
募投項目破除公司產能瓶頸,規模化優勢有望進一步加強。通過持續的技術進步和工藝優化,公司產線生產效率不斷提升,產能利用率持續增長至2019年,公司通過擴產,生物柴油產能提升至24萬噸,位居行業領先地位,2020年公司通過技改雖有提升產能,但產能仍是公司發展的重要瓶頸,公司通過募投項目建設有望在2021年擴充10萬噸生物柴油產能,在破除現有發展限制的基礎,進一步提升公司產品出口的規模化優勢,從而提升公司產品的議價權,帶動公司的盈利不斷提升。
產業鏈延伸布局,構建能、化雙線發展格局。公司多年來在廢油脂產業鏈持續布局,在不斷提升生物柴油技術工藝和生產規模的基礎上,更是進一步進行了產業鏈的擴展延伸,以不同種類的生物柴油為原料生產增塑劑、工業甘油、水性醇酸樹脂等產品,形成了4.4萬噸增塑劑產能,2.8萬噸工業甘油產能及3萬噸醇酸樹脂產能,伴隨募投性項目投產,公司還將增加5萬噸脂肪醇(酸)產能,公司在生物柴油的基礎上,延伸產業鏈布局化工產品,形成能、化雙線布局,在分散單一產品的波動風險的基礎上,進一步提升公司產品的盈利空間。
生物柴油添加比例及結構化升級的政策變動風險:由於化石能源具有成本優勢且供給充足,多年來獲得快速發展,但帶來眾多環境和氣候問題,未了推進二氧化碳減排,生物柴油獲得政策推行,且添加比例不斷提升,若未來政策變動或者添加比例提升速度放緩,或將影響生物柴油終端需求,進而影響行業發展;
貿易政策變動影響國內企業產品出口風險:目前歐美等地區受到政策推動,生物柴油需求量持續攀升,供給缺口提升,國內生物柴油主要以自用和出口為主,若貿易政策變動,或將提升國內產品出口的風險,從而影響國內生物柴油供給企業的發展;
原材料及相關產品價格變動影響產品盈利風險:我國生物柴油主要以廢舊油脂為原料進行生產,若原材料價格波動將影響生物柴油生產成本;同時,生物柴油(廢舊油脂為原料)作為可再生能源添加到化石能源中,產品價格受到柴油及關聯產品大豆、菜籽、棕櫚油的價格影響,若終端產品價格變化,亦將影響產品盈利。There is ongoing research into finding more suitable crops and improving oil yield. Using the current yields, vast amounts of land and fresh water would be needed to produce enough oil to completely replace fossil fuel usage. It would require twice the land area of the US to be devoted to soybean production, or two-thirds to be devoted to rapeseed production, to meet current US heating and transportation needs. Specially bred mustard varieties can produce reasonably high oil yields and are very useful in crop rotation with cereals, and have the added benefit that the meal leftover after the oil has been pressed out can act as an effective and biodegradable pesticide.The NFESC, with Santa Barbara-based Biodiesel Industries is working to develop biodiesel technologies for the US navy and military, one of the largest diesel fuel users in the world.A group of Spanish developers working for a company called Ecofasa announced a new biofuel made from trash. The fuel is created from general urban waste which is treated by bacteria to produce fatty acids, which can be used to make biodiesel.
From 1978 to 1996, the U.S. NREL experimented with using algae as a biodiesel source in the "Aquatic Species Program".A group at the Russian Academy of Sciences in Moscow published a paper in September 2008, stating that they had isolated large amounts of lipids from single-celled fungi and turned it into biodiesel in an economically efficient manner. More research on this fungal species; Cunninghamellajaponica, and others, is likely to appear in the near future.The recent discovery of a variant of the fungus Gliocladium roseum points toward the production of so-called myco-diesel from cellulose. This organism was recently discovered in the rainforests of northern Patagonia and has the unique capability of converting cellulose into medium length hydrocarbons typically found in diesel fuel.
Biodiesel from used coffee groundsResearchers at the University of Nevada, Reno, have successfully produced biodiesel from oil derived from used coffee grounds. Their analysis of the used grounds showed a 10% to 15% oil content (by weight). Once the oil was extracted, it underwent conventional processing into biodiesel. It is estimated that finished biodiesel could be produced for about one US dollar per gallon. Further, it was reported that "the technique is not difficult" and that "there is so much coffee around that several hundred million gallons of biodiesel could potentially be made annually." However, even if all the coffee grounds in the world were used to make fuel, the amount produced would be less than 1 percent of the diesel used in the United States annually. 「It won’t solve the world’s energy problem,」 Dr. Misra said of his work.
原油上漲拉動生物柴油消費 棕櫚油領漲油脂板塊棕櫚油作為生物燃料的原料,價格的漲跌受制於國際原油價格的漲跌。近期,受OPEC達成原油延長減產期限等因素的影響,國際原油價格恢復至40美元/桶的價格。油脂現貨交易商陳通表示,棕櫚油作為生物燃料的原料,價格的漲跌受制於國際原油價格的漲跌。近期原油價格大幅上漲,也使得棕櫚油變得更有吸引力。與此同時,受境外現貨市場需求走強影響,市場猜測6月份前20天馬來西亞棕櫚油出口量環比增加55到57%。需求的增加也支持棕櫚油價格走強。此外,期貨交易員梁福明表示,兩大進口國印度和中國的庫存下滑,加上市場預期馬來西亞和印尼棕櫚油產量增長速度慢於預期,也推動棕櫚油價格上漲。近期油脂板塊大幅上漲的原因是對需求重新恢復信心,在新冠疫情暴發初期,油脂板塊出現大幅回調,1月10日至4月20日以來,油脂板塊一直處於下跌走勢,期間棕櫚油跌幅達28%,豆油跌幅達20%。由於餐飲消費相比居家消費使用油脂的量更大,外出就餐的減少導致油脂食用消費的減少;生物柴油消費是油脂消費的重要去向,居家隔離導致外出減少,生物柴油消費不可避免的驟降。進入二季度後,全球經濟重啟,社交活動增加,外出餐飲消費有所恢復且原油價格大幅上漲,此前對油脂消費端的極端悲觀情緒的修復帶來本輪行情的上漲。五月以來東南亞棕櫚油主產區強勁的出口形勢更是成為本輪上漲行情的助推器。馬來西亞5月月度棕櫚油出口量大大超出市場預期,6月初出口形勢保持良好狀態。本次油脂上漲由菜油、棕櫚油領漲,兩大油脂上漲各有原因。市場菜油庫存低,且中加貿易關係存在不確定性,菜籽進口量持續維持低位,國內菜籽即將減產預期強烈,多因素促使菜油強勢上漲。
「中國三桶油」的區別中石化、中石油、中海油俗稱為「中國三桶油」佔據中國石油行業的半壁江山。但三者最大的區別就是:南方屬於
中石化「冶煉」、北方屬於
中石油「開採」、海上屬於
中海油「海洋開採」。現在外企、民企基本都是在民營煉廠採購,因為採購成本低很多,甚至三桶油有時候缺油也會採民營煉廠油,但是大企業都會有自己的質檢,小民營站就很難說了,基本就是純相信煉廠,大煉廠採購的油還行,小作坊就看運氣了,再就是國省道的柴油為主的站和黑加油站,弄不好就用的是勾兌油,柴油車也感覺不出來什麼,多冒點黑煙誰也不注意。成品油方面三家有公司的產品都是達標的,給的量也肯定夠,少加了也不會進自己腰包,再說國有企業誰也不敢拿質量開玩笑,虧損可以,出來質量問題就得丟帽子,用這三家油都沒有問題。誰高誰低只能說油品批次會有一定影響,並無太大區別。如果非要說一個高低,那只能說中石化的油進價高,但不代表品質一定高。中石化油出廠價高,行業內都知道,因為其加油站多,往往都是自採,不愁銷路,加上國企幹什麼都成本高,所以相對價格高。中石油全國20000多家加油站,中石化全國30000多家加油站,中海油全國只有1000多家加油站,還有40000多家私營加油站,中海油的價格是最低的,因為它是後入市場的,所以想要增大市場份額也只能做促銷。但是價格也不會低到太多,因為人工和成本都擺在那裡。在歐洲市場上佔據絕對主導地位的柴油車從未在中國崛起。因為大多數柴油是客車、貨車,所以我們對它的印象是「
骯髒、
嘈雜、低端」。如果人們能夠花70萬買下柴油版的陸虎,大部分人都願意多花20萬購買汽油版!柴油車價格便宜,燃料效率高,實際上它們在各個方面的性能都比汽油差,它有許多的缺點使人們不想購買柴油車。油有兩個問題,一個是油品,另一個是油量。目前的國標柴油實際上是相當清潔的,柴油中的硫含量不超過10ppm,有必要知道歐盟標準就是這個。那為什麼仍然有傳言說油品不起作用呢?這是一些小型加油站的罪過,每個人都在加油應該在可靠的加油站。除了使許多人心慌的油品外,油品的量也是一個問題。柴油車輛和加油站較少,並且「柴油短缺」,這就是為什麼許多人一直不購買柴油車輛的原因。在某些地方,柴油車輛只能在單位名下,個人買了柴油車不給上牌。「柴油車6年/8年強制黃標準」的說法是無止境的,但據了解,這些說法是不正確的。實際上,許多柴油車輛已經通過了排放測試,並且已經運行了8年並帶有綠標。正如我們在一開始所說的,許多人認為柴油車是「骯髒,吵、低端」。由於他們覺得柴油車正在丟臉,所以這些人絕對不會購買柴油車。在我們對柴油車的印象中,「骯髒」和「低端」並不完全正確,但是這種「嘈雜」確實是事實。實際上,這是由柴油機的點火方式引起的。我們剛剛說過,柴油機的點火方式是通過壓縮空氣來點火,以使空氣的溫度高於柴油的點火點。壓縮空氣時,由於壓縮比高,所以氣壓也高。柴油發動機的很大一部分噪聲源是氣缸中爆炸的聲音。實際上,這也是由柴油機的點火方式引起的。由於氣缸中的氣體壓縮比極高,因此柴油車燃燒期間的震動感比汽油車的震動感強,這可能會影響汽車的舒適性。印度尼西亞和馬來西亞均以棕櫚油作為制生物柴油的主要原料,幾乎沒有進口,以出口為主,預估2019年印度尼西亞生物柴油產量為650萬噸,出口110萬噸,內需540萬噸;馬來西亞體量相對較小,預估產量為150萬噸,出口65萬噸,內需85萬噸。2013—2014年,印度尼西亞政府將柴油中的生物柴油強制摻混比例設為10%,2015年提高到15%,2016年再提高到20%,但因種種原因,例如其國內摻兌設施缺乏、政策實施力度較弱等,2014—2017年實質摻混比例並沒有達到強制摻混的要求。然而這一情況自2018年起開始發生改變,一方面,印度尼西亞國內棕櫚油產量大幅增長,原料庫存壓力不斷加大;另一方面,出口環境持續惡化,2019年歐盟重新徵收對印度尼西亞生物柴油的反傾銷關稅,且因環境保護問題,擬實施棕櫚油制生物柴油禁令,而美國自2017年起對印度尼西亞生物柴油開始徵收反補貼關稅。在內憂外患的背景下,印度尼西亞政府試圖擴大生物柴油內需,政策實施力度加強,2019年實際摻混率提高至20%,預計將達到B20計劃的目標。印度尼西亞政府將自2020年1月1日起實施B30計劃,預計2020年實際摻混率能夠達到25%—30%,將帶來140萬—270萬噸的棕櫚油需求增量,不過出口預計將繼續下滑,棕櫚油需求減量在65萬噸左右。整體而言,印度尼西亞B30計劃的實施將帶來75萬—205萬噸棕櫚油需求增量。2014年,馬來西亞政府在全國範圍內推行B5計劃,2015年提高為
B7(生物柴油摻混比例為7%),2019年再提高到
B10(生物柴油摻混比例為10%)。在國內實施高補貼的情況下,馬來西亞生物柴油生產利潤良好,近幾年生物柴油產量增速維持在30%的水平,不過現階段馬來西亞生物柴油產能在200萬噸,受限於產能壓力,預計2020年生物柴油產量在180萬噸,帶來的棕櫚油需求增量為35萬噸。有消息稱馬來西亞政府擬於2020年年初提前實施B20計劃,但如其國內產能無法擴大,則僅能改變生物柴油出口及內需結構,即提高內需、減少出口,對總體生物柴油產量的實質影響較小。 2018年歐盟生物柴油產量達到了1250萬噸,消費量為1400萬噸,不同於印度尼西亞和馬來西亞,在生物柴油的國際貿易中,歐盟以進口為主,2018年進口量達到300萬噸,顯著高於前幾年,主要是因為阿根廷和印度尼西亞的進口量大幅增加。2013年11月26日,歐盟對阿根廷及印度尼西亞的進口生物柴油正式徵收為期5年的反傾銷關稅,但5年期未滿,阿根廷就於2017年在WTO勝訴,印度尼西亞則於2018年勝訴,反傾銷稅取消使得2018年歐盟生物柴油進口量劇增。歐盟制生物柴油的原料來源豐富,以菜籽油為主;其次是廢棄食用油、棕櫚油、豆油等,不過菜籽油制生物柴油成本高於棕櫚油和豆油,為保護其生物柴油產業,長期以來,歐盟對阿根廷、美國及印度尼西亞設置了一定的關稅壁壘。2009年7月,歐盟對美進口生物柴油正式實施為期5年的雙反關稅,2015年再把期限延長至2020年9月,阿根廷和印度尼西亞雖然在WTO勝訴,但2018年對歐盟的出口量大增使得歐盟不得不繼續採取措施限制兩國出口,2018年12月,歐盟委員會建議恢復對阿根廷生物柴油的反補貼關稅,稅率定為25%—33.4%,後雙方經過協商,2019年2月,歐盟決定豁免8名阿根廷生物柴油生產商,其被允許出口生物柴油到歐盟而不繳納關稅,只要他們按照既定的最低價出售。2019年8月,歐盟正式對印度尼西亞進口生物柴油徵收8%—18%的反補貼稅,市場預計12月中旬歐盟將決定是否長期對印度尼西亞輸歐生物柴油徵收反補貼稅。近年來歐盟內部對生物柴油的發展出現了一些變化,因涉及糧食及環保問題,擬限制以糧食作物為主的生物燃料消費量,提高以非糧食作物為主的第二類生物燃料消費量,要求各成員國2020年在交通部門使用第一類生物燃料的比例要降至7%。歐盟可再生能源指令(REDII)更進一步要求,基於糧食作物的第一類生物燃料的摻混上限要從2021年的7%下降到2030年的3.8%,將第二類生物燃料的摻混下限從2021年的1.5%上調到2030年的6.8%。從歷年歐盟生物柴油的原料結構可以看出,廢棄食用油、動物油的消費量逐年增長,植物油則出現了一定的下滑,未來這種趨勢還將延續。歐盟擬對棕櫚油基生物柴油實施禁令,將於2030年前逐步停用棕櫚油制生物柴油,這將直接影響到用於生產生物柴油的250萬噸棕櫚油進口量,再加上2019年歐盟重新對印度尼西亞生物柴油徵收反傾銷稅,近年來歐盟與印度尼西亞、馬來西亞貿易糾紛不斷。美國制生物柴油的原料廣泛,其中豆油佔了近60%以上,預估2019年生物柴油產量將達到600萬—650萬噸。進口方面,以往美國生物柴油進口主要來自阿根廷和印度尼西亞,兩國進口量自2013年迅速增長,直到2017年美國商務部決定對阿根廷及印度尼西亞的進口生物柴油徵收反補貼稅,限制了兩國生物柴油進口,至此,美國的生物柴油進口量開始迅速下滑,從2016年的230萬噸下滑至2018年的55萬噸。美國對於農業的扶持力度較大,故對於生物柴油也出臺了相應的鼓勵政策,一方面,自2010年起美國環境保護署設定每年生物柴油最低使用量,例如2011年為8億加侖,2018年為21億加侖,2019年為24.3億加侖,2020年為24.3億加侖,目前美國產能在25.5億加侖,約840萬噸;另一方面,生物柴油有著1美元/加侖的補貼,還有稅收抵免的政策。2020年,在政策不變的情況下,阿根廷和印度尼西亞生物柴油進口仍將受到限制,預計美國生物柴油淨進口量與2019年持平,維持在20萬噸的水平,為達到美國環境保護署的最低使用量標準,其國內需求和產量將繼續增加,預估增量在50萬—100萬噸,原料端,植物油增量40萬—80萬噸,其中豆油增量25萬—55萬噸。巴西制生物柴油主要以豆油為主,牛油為輔,豆油佔比在70%—80%,整體處於自給自足的市場,進出口量均較小,預估2019年產量達到500萬噸。其生物柴油政策穩步推進,2008年年初設置強制摻混標準為2%,下半年提高到3%,2009年提高到4%,2010年提高到5%,2014年分別為7%,2016年提高到8%,2017年為9%,2018年則為10%,2019年再提高到11%。預計2020年巴西生物柴油產量增長35萬噸左右,帶來的豆油增量在20萬噸左右,牛油約5萬噸。阿根廷制生物柴油也以豆油為主,2019年生物柴油產量預估在220萬噸,原料和生物柴油出口稅率的差異(原料高,生物柴油低),使得阿根廷在生物柴油的國際貿易中扮演著主要出口的角色,近年來面對歐盟和美國的貿易壁壘,阿根廷可謂是舉步維艱,不過現階段情況有所好轉,2019年2月,歐盟豁免了符合既定最低價(豆油價格+生產成本)的阿根廷113萬噸的生物柴油進口量,2018年阿根廷出口歐盟生物柴油量在140萬噸,2019年8月,美國將阿根廷的反補貼關稅從72%調至10%,不過反傾銷關稅仍未取消,為75%,阿根廷生物柴油對美出口窗口仍未打開,預估2019年阿根廷生物柴油出口量在100萬噸。
石油農業亦稱
石油密集農業、
化學農業、
無機農業或
工業式農業(
Industrial Agriculture),是世界經濟發達國家以廉價石油為基礎的高度工業化的農業的總稱。是在昂貴的生產因素(即人力、畜力和土地等),可由廉價的生產因素(即石油、機械、農藥、化肥、技術等)代替的理論指導下,把農業發展建立在以石油、煤和天然氣等能源和原料為基礎,以
高投資、
高能耗方式經營的大型農業。美國農業實質上是資本、技術和能源密集型農業,即採用現代化的設施及農業機械裝備,依賴大量地投入化學肥料、農藥、殺蟲劑、除草劑,用高投入換取高產出。這在一定程度上違反了作為自然再生產和經濟再生產相結合的農業本性,不可避免地造成環境汙染、水土流失、病蟲害持抗性增加、品種資源單一化等一系列問題。由於國人羨慕、效仿、追求美國式以肉奶為主的飲食方式,在過去30年中,中國肉類、河海鮮類、蛋類和牛奶等
動物蛋白消費量增速驚人,但是,中國的人均耕地不足美國的
1/6,根本提供不了這麼多合格的動物蛋白。於是,中國一方面從國外大量進口動植物蛋白,其中進口大豆佔比消費高達
86%;另一方面,則在動物飼養環節,大量採用
激素和
抗生素促使動物速生,使
毒害肉類成為普遍現象。中國糧食總產量雖然從1998年的5.12億噸增長到2015年6.2億噸,增長了1.08億噸。其實主要是從玉米增產而來,1998年中國玉米總產量是
1.32億噸,而2015年是
2.29億噸,增加了0.97億噸。中國的石油農業千瘡百孔,不堪重負,已經到了非常嚴峻的地步:1.耕地面積因為城鎮化而迅速萎縮,雖然國家統計數據似乎無需悲觀,但事實上全國城市周邊的大量良田都變成了工廠、樓盤。特別是原先「
蘇杭熟,天下足」的蘇州、杭州農田已經所剩無幾;珠三角的農耕田也基本消失。2.對於土地地力的透支已經到了無以復加的程度,中國化肥、農藥和塑料薄膜的單位面積使用量都遠遠超過世界平均水平,其中化肥是全球平均水平的2倍以上。中國農地常年都是滿負荷運營,基本沒有輪休,過去30年石化農業對土地肥力的透支傷害遠遠超過此前5000年的累加。3.由於嚴重的工業、農業和生活汙染疊加,中國耕地已經普遍被
化肥、
農藥和
重金屬汙染,不少土地已經因嚴重汙染而失去了種植的價值。4.中國包產到戶的小農經濟,十分分散,生產效率低下,致使農田水利等公共工程長期被荒廢失修,使得農業抵抗自然災害的能力,尤其是抗旱能力遠低於30年前。我國原本就是一個嚴重乾旱、缺水嚴重的國家,人均水資源僅為世界平均水平的1/4、美國的1/5,在世界上名列121位,是全球13個人均水資源最貧乏的國家之一,且分布極不均衡,北方和西部極為缺水。近些年來,中國水資源情況加速惡化,除了城市和工業大量消耗浪費汙染水資源外,全國興建了超過500家高爾夫球場,每天消耗了巨量的水資源,導致地下水位不斷下降。這一隱患已極為嚴重。5、由於國家長期壓制農產品價格,加上農民人均土地少,農業生產的利潤非常菲薄,甚至虧損,因此
青壯年勞動力紛紛流往城市打工,致使農村一般只有老弱在維持農業,土地撂荒現象相當嚴重。
石油化學農業是指在生產上嚴重依賴
化肥農藥,靠
大型農機進行
大面積單一作物種植的農業模式。這種模式在20世紀為全球糧食「增產」做出了貢獻。石油農業(
petro-agriculture) (現代農業)是大面積
機械化耕作、 大量
施用化肥、 農藥、 除草劑為主的
集約化農業。
石油農業是繼
傳統農業之後,世界農業發展的一個重要階段。20世紀50年代以來,石油農業得到更快發展,多實行企業化和集中式經營,耗用大量以石油為主的能源和原料,具有高產、高效、省力、省時、不施糞肥、經濟效益大等特點,無論對提高農業生產效率和農產品產量,解決因人口激增而引起的世界糧食需求矛盾尖銳等問題,或在經濟發達國家的農業發展史上均起過重要作用。但也曾一度因出現全球性的石油危機和生態環境的不斷惡化而暴露出它在經濟、技術、生態上均存在一定弊端或潛在威脅。對此,必須給以足夠重視。石油農業是針對農業對能源的利用和消耗來講的,其實質是用
高能量來換取
高產量。石油農業產生了一系列嚴重後果:以石油為原料的
化肥、農藥的大量使用,加之耕作、灌溉、加工、運輸都需要石油,因而嚴重地加劇了能源危機。石油農業忽視了有機肥料及覆蓋物的作用,造成了嚴重的風蝕和水蝕,破壞了大量的農田。大量使用
化肥和農藥,不僅造成了能源的緊張,而且也造成了嚴重的環境汙染。自20世紀20年代以來,為解決糧食問題,伴隨著工業發展和科技進步,一些發達國家先後步入以化石能源投入和機械化生產為主導的「石油農業」生產。石油農業依靠化肥、農藥、化石燃料、塑料薄膜等的廣泛應用,使農業勞動生產率大幅度提高,農產品產量大幅度增長。但是,也帶來了諸多問題,例如過多施用化肥、農藥,使用塑料薄膜,造成土壤質量下降;農產品農藥殘留量的增多使食品安全受到威脅;農機具、化石燃料的廣泛應用增加了能源消耗和大氣汙染;規模化養殖業的迅猛發展造成了畜禽糞便不能及時消納,導致環境汙染等問題日益突出。根據聯合國糧食及農業組織(FAO)2007年統計數據:中國2012年第一產業就業人員
2.58億人,耕種了約18億畝耕地(播種面積24.51億畝),人均耕種約
7畝耕地。而2009年美國農業從業人口(farmers)為
205.6萬人,約有190萬個農場,土地面積為
29.7億畝(扣除休耕面積),平均每個農場土地面積為
1563畝,平均每個農場只有1.08人進行生產和經營,每個農業從業人口平均耕地面積高達
1445畝。中國18億畝耕地生產了3864.48億美元農業產值(畝均農業產值214.7美元/畝),農業從業人口2.58億人(人均農業產值0.15萬美元/人);美國29.7億畝耕地生產了1846.99億美元農業產值(62.2美元/畝),農業從業人口205.6萬人(8.98萬美元/人)。
石油化學農業是指在生產上嚴重依賴
化肥農藥,靠
大型農機進行
大面積單一作物種植的農業模式。這種模式在20世紀為全球糧食「增產」做出了貢獻。目前全球生長著轉基因作物的2.8億公頃土地中沒有一塊為養活忍受著飢餓的那10億人作出了貢獻。轉基因
棉花和油菜籽不能吃,
玉米被加工成生物燃料,而
大豆則被用作飼料。石油農業在1960年左右顯著突飛猛進,最近100年左右的時間裡
大豆單產從
11蒲式耳每英畝到
50蒲式耳每英畝,玉米單產從
28蒲式耳每英畝到
175蒲式耳每英畝,大米從1600磅每英畝到7700磅每英畝。但在這光鮮的高科技、高收益、高效率農業的數字背後是高消耗、高汙染、高風險。1、美國每年生產的
3億噸糧食,須消耗石油
6000~7000萬噸、鋼鐵約800萬噸(實際指農業機械)、化肥(折純)約4000萬噸,廣義農藥(原藥)100萬噸以上。2、美國農業過分依賴化肥和農藥,導致土壤惡化和環境汙染。美國31個州存在化肥汙染地下水的問題,衣阿華州大泉盆地在1958—1983年的25年間,地下水中的硝酸鹽濃度增加了3倍。美國中西部一帶農田的表土,早年深達1.8米,是世界上罕有的肥沃土壤,目前表土只剩下0.2米。3、病蟲害的大規模爆發。1970年美國玉米因斑病菌大流行,15%的玉米產區顆粒無收,減產1650萬噸。昆蟲的抗藥能力在過去的40年大幅提高,最近出現的草地貪夜蛾和沙漠蝗蟲等神蟲由此進化而來。農業產量增長勢如破竹,在印尼和巴西等工業發展不夠發達國家,收入拓展的壓力完全轉向到土地身上,「燒芭」拓荒的方式盛行。Humans have been farming for 10,000 years. Sixty years ago, after World War II, we started industrializing U.S. farming operations through a mix of policy decisions and accidents of history. This method of farming is neither inevitable nor efficient. More to the point, it can’t be sustained.
Industrial agriculture treats the farm as a
factory, with 「
inputs」 (pesticides, fertilizers) and 「
outputs」 (crops). The end-objective is increasing yields while controlling costs — usually by exploiting
economies of scale (i.e. making a lot of one thing, or 「
monocropping」), and by replacing solar energy and manual labor with
machines and petro-chemicals like pesticides and fertilizers.In relying on chemical 「
inputs,」 we have un-learned how to farm.This model of farming is inefficient and does not represent the cutting edge of modern farming. In 1940, we produced 2.3 food calories for every 1 fossil fuel calorie used. By industrializing our food and farming systems, we now get 1 food calorie for every 10 fossil fuel calories used — a 23-fold reduction in efficiency. Following this path we have become dependent on cheap, abundant oil, and on quick chemical 「fixes」 for agro-ecosystem challenges that are complicated and require deep, local and hands-on knowledge. In relying on chemical inputs, we have un-learned how to farm.中國農業「
12連增」的糧食是一個假象,中國糧食總產量雖然從1998年的5.12億噸增長到2015年6.2億噸,增長了1.08億噸。其實主要是從玉米增產而來,1998年中國玉米總產量是1.32億噸,而2015年是2.29億噸,增加了0.97億噸。而玉米增產主要原因是國產傳統非轉基因大豆的種植面積轉為種植玉米──由於
玉米的單產遠高於大豆,一度其
經濟效益超過傳統大豆,農民棄大豆種玉米。這就造成「
一俊遮
百醜」的假象──這背後是中國糧食結構的嚴重惡化──低蛋白含量的
玉米取代了高蛋白含量的
大豆,並導致中國大豆對外依賴度急速上升到86%,而且,這些進口大豆都是轉基因大豆,而以前中國自產的非轉基因大豆。今後幾年糧食增產後續乏力已成定局。山東蔬菜最多的地方——壽光,整個市都是種大棚蔬菜的。但是現在那裡的土地已經基本上種不出蔬菜了。原先用很多的農藥化肥,還可以種得出來;現在用再多的農藥化肥,也種不出蔬菜來,就已經到了這麼嚴重的地步。有沒有留一個細節,為什麼要花那麼大的代價去穿越,就是它的穿越的前期設定。它的設定就是:土壤被破壞了,再過幾十年,地球上種不出作物了,最後能種出來的就是一種作物——玉米。然後大家每天只能吃玉米,早餐玉米餅玉米汁玉米粥,晚餐還是。這個絕對不是危言聳聽,土壤遭到嚴重的破壞之後,有可能有一天我們地球上真的是種不出來東西。所以,按照現在的方式去種植、去做農業,從根本上來講是不可持續的。這樣走下去,我們的文明、我們人類、我們的地球是沒有未來的。另外一方面,我們現在的種植方式是大量的依賴於石油的。我們總認為機械化的效率高,好像一個人可以耕種很多土地。但是從能源投入產出比來講,它的效率是很低的。我們做過一個分析:過去用牛耕的時代,我們投入一份能源,可以產出四五份。我們說我們吃了飯去種地,吃飯,我們是消耗了食物帶給我們的能量,然後我們再去種地,再去播種。包括用牛也好,我們種出的食物的能量是比我們吃進去的要多的。我們一個人能夠養活好幾個人,不需要再依賴外部能源。但是到了
化學農業時代,
機械農業時代,我們的能源投入產出比大概是10:1。也就是說,我們投入十份的能源只產出一份。它是虧本生意。那多餘的十份是從哪來的?石油,我們挖掘了地底下儲藏的能量來生產食物。但是我們投入十份的能量才產出一份,是效率最低的時候。它是一個虧本生意,我們提前耗用了埋藏在地底下的能量。我們說生產植物是需要太陽能的,需要能量的。平衡,一個不去消耗的狀態是我們用太陽能就可以了。現在我們嚴重的依賴於埋藏在地底下的太陽能,所以從根本上來講是不可持續的。綠色革命一個很重要的就是雜交種子。原先農民是自留種的,一代一代地去培育種子,然後把它留起來。當然農民對這個種子是非常了解的,他是這個種子的專家,他也是這個種子所產生的作物的專家,他是最了解他留的品種的,也是最適應本地的。到了雜交種子之後,農民不再是種子的擁有者。種子是在科學家實驗室裡培養出來,育種公司把它培育出來,然後交給農民。農民不了解這個種子的習性,不知道怎麼種,就變成了農民不是專家了,研究這個種子的人成為專家了。當研究這個種子的人成為專家,農民就喪失了對知識的擁有,農民不再是農耕知識的擁有者。農業工業化進程,指的就是這個。過去的農民是通過看天氣,這個季節該播種了,今年的雨水怎麼樣,是不是該澆水了,該用什麼肥,這個階段該做什麼.是根據他對於作物的了解和對大自然的一個判斷,來做出決定。雜交種子往地裡面一播,除草劑一撒,化肥一用,農藥一打,不需要再去了解作物的生長規律,也不需要再對大自然的環境作出判斷,基本上是標準化操作的。也就和工廠流水線一樣,農民不再是一個有自主意識自主知識擁有者的一個個體,而變成了農業工業化生產線上的一個環節。The world is eating petroleum: For all but the few remaining self-sufficient villages and nomads obtaining all their own food, the whole globe is fed by oil-shipped food that was grown mostly with petrochemical agriculture. Think also of the oil fuels used in tractors and in other machinery.
Today's mechanized, petrochemical agriculture uses 100 times the energy that traditional, non-mechanized agriculture does (or did).
Traditional, non-mechanized agriculture produces (or produced) ten calories of food for each calorie of energy inputted into the food system.
The U.S. uses more than twice the per capita energy per acre of farmed land compared to other industrialized nations, and 28% of the world's agricultural energy budget.
Flying commodities by air, which uses nearly 40 times the amount of fuel that sea transport uses, is now a regular feature of world trade.
Every ten glasses of orange juice drunk in Britain requires one glass of diesel fuel for processing and transport. That diesel poisons the world.This petro-agriculture system has allowed for a massive swelling of all industrial and semi-industrial populations since the 1930s. There is no handy replacement for petroleum in agriculture/food distribution - for six billion people, anyway. Therefore, a crash in oil supplies would mean a population crash, if the needed oil is not well distributed during a well-planned oil-weaning phase. With economic crash, and people no longer able to consume their lives away and drive for dollars, agriculture and food distribution could be hit with insurmountable interference, upon an oil/socioeconomic collapse. The fact that unethical corporate energy corporations have put nails into the economy's coffin is sort of a side show, with ironies including the Bushies/Cheney type of profiteers.There will be a petroleum supply crash because the dominance of petroleum corporations and oil exporting nations has been complete. The oil market is sensitive and vulnerable because it is so massive, which in turn keeps alternative energy forms suppressed and undeveloped. And, the substitute energy forms that that have been introduced are not nearly as versatile as petroleum. Petroleum in the form of natural gas makes such things as critical fertilizers and seemingly indispensable plastic bags. One does not get chemicals for agriculture out of solar panels, or asphalt-oil out of windmills, or tires (synthetic rubber) out of fuel cells. What's more, the "technofix" energy forms never have imbedded energy taken into account, i.e., how much fossil fuel goes into making the renewable-energy system components. Net energy is therefore crucial, at a time when new U.S. oil wells today on average "produce" at zero net energy.Instead of going after Iraq militarily and thinking only in terms of oil, the U.S. government and its corporate-establishment alter ego would serve everyone better by allowing segments of the economy to be weaned off fossil fuels. Conservation, and secondly renewable energy, would avoid some of the disruption and chaos ahead, and spare the atmosphere from global warming gases. Low oil prices are even worse than super high oil prices, because demand has been maximized by subsidizing petroleum. Conservationists differ with the establishment view on oil prices: "A proposed attack on Iraq is an extraordinarily high-risk economic adventure that could either destabilize the governments of one or more oil exporting countries by creating a prolonged period of low prices, or, if things went wrong..." said Philip K. Verleger Jr., an oil consultant with the Council on Foreign Relations (emphasis added), in the New York Times July 31.The biggest oil spill in the history of the world was the first Gulf War. Besides precious waters damaged, the toll on the atmosphere and climate was immeasurable. The Earth is a closed system, but we just keep hacking away at it even as it shows clear signs of dying. Is that road the only way to go, when our living within the ecosystem's carrying capacity and enhancing local economics are proven, key elements of a sustainable society? 「
石油農業」是以美國為代表的高投入、高產出的農業現代化模式。這一模式之所以被稱為「石油農業」,是因為它大量地使用以石油產品為動力的
農業機械,大量使用以石油製品為原料的
化肥、農藥等農用化學品。
機械化和化學化是這一農業現代化模式的共同特點。 以美國為例,1920年到1990年,美國的拖拉機數增加了18倍,農用卡車增加了24倍,穀物聯合收割機增加了165倍,玉米收穫機增加了67倍。1970年農用化學品的使用量是1930年的11.5倍。1990年化肥的使用量為1946年的6.1倍。與此同時,美國農業的投入結構也發生了很大的變化。1920年農業投入中勞動、不動產、資本三者之間的比例為50∶18∶32,這一比例到1990年變為19∶24∶57。農業的現代化使美國的農業生產力水平有了大幅度的提高。從1930年到1990年,美國的小麥單產提高了1.45倍,棉花單產提高了2.57倍,土豆單產提高了3.48倍,玉米單產提高了5.12倍。1950-1975年美國農業勞動生產率提高了2.4倍;每個農業勞動力所能供養的人數,1910年為7.1人,1989年增加到98.8人。農產品商品率1910年為70%,1979年已達到99.1%。同時,農業生產同農產品加工、銷售以及農業生產資料製造、供應之間的聯繫日趨緊密,農業的專業化、社會化程度也有了大幅度的提高。美國的這場「
石油農業革命」不僅使美國的農業實現了現代化,而且還促成了人類歷史上第一次全球範圍內的農業現代化努力。從發達國家到發展中國家,「
石油農業」迅速成為全球農業發展的主要模式。60年代末的世界糧食首腦會議確立了這一模式是農業現代化的必由之路,並把它作為此後二十年改變全球糧食供應緊張、消滅飢餓的主要措施。這一努力的積極成果是大大提高了農產品的產量,世界養活了比原來預期多10億以上的人口。
石油農業是以廉價石油為基礎的高度工業化的農業的總稱。這一模式之所以被稱為「石油農業」是因為它大量地使用以石油產品為動力的
農業機械,大量使用以石油製品為原料的化肥、農藥等
農用化學品。
機械化和
化學化是這一農業現代化模式的共同特點。我們經常聽到的現代農業其實很很大一部分就是石油農業帶來的。石油農業具有高產、高效、省力、省時不施糞肥、經濟效益大等特點。無論對提高農業生產效率和農產品產量,解決因人口激增而引起的世界糧食需求矛盾尖銳等問題,或在經濟發達國家的農業發展史上均起過重要作用。我國目前還處於
傳統農業向
石油農業過渡的階段。不過,近些年石油農業帶來的環境惡化、食品安全等問題受到人們的越強越強烈的關注。
In its narrow pursuit of yield,
industrial farming hides (or 「externalizes」) a variety of costs stemming from such chemical dependence:
Soil & Water : We are exhausting and polluting our soil and water. Industrial agriculture uses 70% of the planet’s fresh water. According to EPA, U.S. agriculture contributes to nearly 75% of all water-quality problems in the nation’s rivers and streams.
Resilience & Food Security : Our food supply is more susceptible to shocks than ever before because we have disassembled our grain reserves, let bankers into the business of betting on commodity crops and put small-scale farmers around the world out of business.
Climate Change : The current food system is responsible for 1/3 of global greenhouse gas emissions; it is also fully dependent on oil both for transport and because pesticides and fertilizers are petrochemically-derived.
Bees & Biodiversity : Industrial agriculture is the largest single threat to biodiversity, and 7 in 10 biologists believe that today’s biodiversity collapse poses an even greater threat to humanity than climate change. Bees, bats, amphibians and other beneficial species are dying off, and their declines are linked to pesticide exposure.
Human Health : While farmworkers and their families, rural communities and children are on the 「frontlines」 of industrial agriculture, we all carry pesticides in our bodies. Pesticide exposure undermines public health by increasing risks of cancer, autoimmune disease (e.g. diabetes, lupus, rhuematoid arthritis, asthma), non-Hodgkin’s lymphoma, Parkinson’s disease and more.
所謂「
現代化農業」本質上是「
石油農業」,即「利用土地把
化石能源轉化成
食品」,它以工業化為支撐,以大量技術、資金和資源投入為基礎,依靠大量使用
石化能源產品,如化肥、殺蟲劑、除草劑、激素和農膜等,維持
農業產出。目前,除了在機械化、規模化方面還存在較大差異外,中國的「
現代化石油農業」已經成型,大量使用石化能源產品已經非常普遍,甚至在偏遠山區,農民也已經大量使用毒性很強的除草劑和殺蟲劑。「現代化石油農業」的非綠色生態性質非常明顯:大量使用化肥和農膜本質上是對土地肥力的掠奪,是對土地竭澤而漁;大量使用農藥、激素和抗生素不僅毒害了我們自己,而且嚴重汙染了土地和環境,最終損害了土地的生產力,嚴重削弱了土地的人口供養能力。其最終結果就是,在我們這幾代人身後留下一片片貧瘠的土地,這等於斷送了子孫後代的生路;普查數據顯示,農業源汙染明顯超過工業或城鎮生活汙染」,「農業源汙染才是我國真正的汙染大戶和第一水汙染源頭」。從生態環境和人類食物鏈的高度看,這一「非綠色生態性質」從根本上決定了現代化石油農業「不可持續」的性質。
綠色革命和
石油農業這種思路,形象地說就是把石油直接澆灌農田。它有兩個致命的缺點:第一,它會產生強烈的
化肥依賴。使用化肥和殺蟲劑之後,土壤會出現板結和土質下降,越使用肥力越差,結果你要生產更多的糧食就需要投入更多的化肥,這就產生了一個惡性循環,越來越依賴於化肥。第二,
石油依賴。因為你要開動農業機械、播種、收割,這套東西都必須依靠石油,沒有石油它就轉不動,所以機械化程度越高,對石油依賴性越強,同時你生產出來這麼多糧食,怎麼運輸?長途運輸也得依賴石油。這兩種依賴——化肥依賴和石油依賴,歸根到底就是一個依賴——石油依賴。沒有石油,就沒有化肥,就沒有殺蟲劑,就沒有生產運輸的能力,就沒有收割機,什麼東西都開不動。一旦石油斷供,越發達、越現代化、越機械化的農業衰退得越慘,沒有石油,沒有化肥,糧食產量立刻腰斬 。
【
Green Revolution】The Green Revolution is the increase in food production stemming from the improved strains of wheat, rice, maize and other cereals in the 1960s. An agricultural programme of the 1960s and 1970s, funded by private charities and governments of the industrialized nations, that attempted to solve the problems of Third World hunger by a package of measures to improve crop yields. The package comprised
high-yielding varieties of cereal crops combined with
mechanization, increased use of
fertilizers to increase yields, pesticides to combat disease, and water for irrigation. Large increases in crop yields were achieved in many Asian countries, for example India and the Philippines. However, since the mid-1980s yields have levelled off, and there has been criticism of the programme, as in some places it has tended to benefit the
large landowner at the expense of
smaller farmers.There is a multitude of problems in developing the world's agriculture, for example, petro-agriculture has the insurmountable disadvantage.
新冠疫情引發的出行限制,造成外來務工人員短缺,已經引起市場的警惕,並造成馬來西亞棕櫚油減產。同時原油價格下跌,棕櫚油價格相對較高,已經造成印尼生物柴油基金緊張。該項目使用出口費來補貼生物柴油與柴油的價差。目前印尼實施B30的生物柴油強制摻混率。不過印尼總統約科·維多多支持國內棕櫚油產業,意味著該項目具有明顯的政治色彩,因此該項目有可能繼續實施,不過需要找到替代性的辦法。Godrej國際公司董事Dorab Mistry建議採取更靈活的政策來減輕財務負擔,他建議毛棕櫚油價格達到600美元/噸時實施B30項目,漲至700美元或更高時實施B25,然後是B20。大多數人都表示同意,不過印尼可能繼續嚴格實施B30。如果棕櫚油與汽油的價差依然很大(上月達到九年來的最高400美元/噸),那麼馬來西亞可能努力控制在全國範圍內實施B20項目。
第一波新冠疫情過後需求疲軟,馬來西亞衍生品交易所(BMD)毛棕櫚油期貨市場基準毛棕櫚油期約價格曾於5月份跌至460美元/噸,不過9月份反彈至745美元/噸。因此棕櫚油需求可能進一步受到影響,特別是歐盟等生物柴油出口市場。在這些市場,他們正試圖轉向廢舊原料,例如用過的食用油。
德國油世界執行董事Thomas Mielke稱,2020年全球生物柴油產量將比2019年減少2.52%,為4340萬噸。印尼的產量將達到720萬噸,低於上年的748萬噸,馬來西亞的產量預計為90萬噸,低於上年的142萬噸。歐盟的產量預計減少78萬噸,為1430萬噸,巴西產量將從上年的516萬噸增至550萬噸。