自由基OLED研究現新進展,發光效率大大提高

2020-11-25 LEDinside

2018-11-26 14:32:21 [編輯:Andygui]

為了提高顯示器的亮度、對比度和解析度,同時降低生產成本和能源使用,科學家開發了幾種類型的LED,包括OLED、基於量子點的LED(QLED)、基於鈣鈦礦的LED和Micro LED。日前,發表在《自然雜誌》上的一項新研究表明,使用自由基的OLED出現新進展。

圖片來源:Nature

11月22日,《Nature》雜誌刊發了吉林大學化學學院、超分子結構與材料國家重點實驗室李峰教授研究團隊和劍橋大學卡文迪許實驗室(Cavendish Laboratory)Richard H. Friend教授研究團隊合作論文「高效雙線態自由基發光二極體」。

李峰教授研究團隊以TTM自由基作為核心,以PCz和NCz兩個咔唑衍生物作為給體(Donor),得到了兩個高效的電荷轉移態(CT)紅光自由基TTM-3NCz、TTM-3PCz(如圖1所示)。這種Donor-Radical結構的分子設計大幅提高了發光自由基分子的穩定性以及發光效率,兩個分子甲苯溶液中的光致發光效率分別達到49%和46%,其摻雜薄膜的光致發光效率分別達到90%和61%。

圖1 自由基TTM、TTM-3NCz和TTM-3PCz的分子結構 (來源:吉林大學化學學院)

在吉林大學培英計劃的支持下,通過與劍橋大學Richard H. Friend教授研究團隊合作,以TTM-3NCz、TTM-3PCz摻雜薄膜為發光層製備的OLED最大EQE分別達到27%和17%(如圖2所示),其中27%的EQE已接近100%IQE的理論極限值,是目前為止已報導的深紅光/近紅外光發光二極體(LED)中的最高值。同時,瞬態光譜和理論計算結果表明:器件的發光來自於自由基雙線態激子SOMO→HOMO的躍遷。該研究成果是OLED研究領域的重大突破,展現了發光自由基在有機光電領域的應用前景,為OLED的研究開闢了新的方向。

圖2 基於TTM-3NCz、TTM-3PCz的OLED的能級結構以及EQE曲線(來源:吉林大學化學學院)

Tetsuro Kusamoto和Hiroshi Nishihara解釋說,有機自由基只有奇數個電子,因此具有高反應性和化學不穩定性。但是,通過改變分子結構,一些自由基在空氣下會變得足夠穩定。自2006年以來,研究已經證明了自由基發光穩定以及將它們用於照明材料和器件的可能性。

他們的評論指出,目前,基於自由基的OLED只在有限的顏色範圍內發光,因為只報導了少量穩定的發光自由基。而且,發光自由基的電子特性使得它們難以發處藍色(高能量)光。評論表示,未來的研究可以集中在如何調整有機自由基來產生多種顏色。由於最近開發了基於自由基的OLED,因此有進一步改進的潛力。(編譯:LEDinside James)

 

 

如需轉載,需本網站E-Mail授權。並註明"來源於LEDinside",未經授權轉載、斷章轉載等行為,本網站將追究法律責任!E-Mail:service@ledinside.com

如需獲取更多資訊,請關注LEDinside官網(www.ledinside.cn)或搜索微信公眾帳號(LEDinside)。

相關焦點

  • 自由基OLED研究出現重大進展,發光效率大大提高
    日前,發表在《自然雜誌》上的一項新研究表明,使用自由基的OLED出現新進展。Friend教授研究團隊合作論文「高效雙線態自由基發光二極體」。李峰教授研究團隊以TTM自由基作為核心,以PCz和NCz兩個咔唑衍生物作為給體(Donor),得到了兩個高效的電荷轉移態(CT)紅光自由基TTM-3NCz、TTM-3PCz(如圖1所示)。
  • 有機發光二極體研究取得新進展:提高螢光發光材料發光效率
    據報導稱,吉林大學化學學院、超分子結構與材料國家重點實驗室李峰教授團隊利用有機發光自由基材料製備有機發光二極體,實現了接近100%的量子效率,解決了傳統螢光發光材料發光效率低的問題。該成果以吉林大學為第一完成單位在《自然》刊發。
  • 新技術通過釋放光子,使OLED可獲得高達76.3%的量子效率!
    得益於過去三十年的深入研究,有機發光二極體(OLED)已穩步佔領電子市場,從OLED手機顯示器到電視屏幕的推出,應用程式的清單很長。目前OLED的研究主要集中在提高白色OLED在燈或汽車內部照明等照明元件上的性能。這些部件在穩定性、角發射和功率效率方面都有更嚴格的要求。
  • 高效自由基發光二極體研製成功
    Friend團隊合作,研製出一種新型發光二極體,利用自由基大大提高了發光二極體的發光效率。相關論文於11月22日在《自然》雜誌發表。  有機發光二極體(OLED)中生成比例達75%的三線態激子通常因躍遷禁阻而不發光。因此,如何利用三線態激子實現100%的內量子效率(IQE)已成為OLED領域近30年來的研究熱點。
  • 91%量子效率——有機含碘自由基的高性能高穩定性固態發光
    自由基的發光不同於普通單重態(S1)的螢光和三重態(T1)的磷光,是基態和激發態都為二重態的發光,使得其理論上可以繞過普通單重態發光體OLED中的不發光三重態(通常因此電激發量子效率最高只能到25%)。但長久以來,共軛自由基的發光量子效率尤其是固態發光效率一直很低(<10%),其光照穩定性也欠佳(<200s)。
  • 吉林大學化學學院李峰教授團隊在有機發光自由基領域再次取得重要...
    此後李峰課題組與劍橋大學Richard Friend課題組合作報導了內量子效率(IQE)接近100%理論極限的深紅光自由基雙線態有機電致發光器件(OLED)(Nature,2018,563,536–540)以及與劍橋大學Richard Friend課題組和喬治亞理工學院Jean-Luc Brédas教授課題組合作報導了不遵循構造原理高穩定高發光效率的發光自由基(Nature Materials, 2019
  • 「穩定」自由基又有了新方法!吉大李峰教授團隊在提...
    吉大李峰教授團隊在提升有機發光自由基穩定性方面取得突破性進展》近日,《NatureMaterials》雜誌刊發了吉林大學超分子結構與材料國家重點實驗室李峰教授團隊、喬治亞理工學院Jean-LucBrédas教授團隊和劍橋大學卡文迪許實驗室RichardH.Friend教授團隊的合作研究論文「不遵循構造原理的高穩定高發光效率給受體結構中性自由基」(Highstabilityandluminescenceefficiencyindonor–acceptorneutralradicalsnotfollowingtheAufbauprinciple
  • OLED與LED的發光原理區別
    在這種背景之下,OLED應時而生,為廣大商家開闢新的市場提供了廣闊的前景,那麼OLED和LED的區別到底在哪,它們的發光原理又是什麼,下面我們一起來探討一下  LED用的是金屬材料,而oled用的是有機物材料,兩者的發光原理是一樣的,區別在於oled不需要背光源,自己本身會發光,是採用發光二極體陣列組成.
  • 聚集誘導發光提高發光效率—新聞—科學網
    聚集誘導發光材料的高技術應用示例 光在人類生活和文明進程中不可或缺,近代光學研究的重大進展多與發光材料有關,然而傳統有機發光材料的設計與應用面臨聚集導致發光猝滅(ACQ)的制約,ACQ也是有機發光材料應用的
  • 如何提高led發光效率
    打開APP 如何提高led發光效率 姚遠香 發表於 2019-01-29 14:30:31   過去十多年來,通過在材料和器件設計方面的改進,使得LED的發光效率獲得了極大提高。
  • 【科技日報】螢光/磷光混合型白光OLED研究取得新進展
    中科院長春應用化學研究所馬東閣研究員等在螢光/磷光混合型白光OLED研究方面取得新進展,相關成果日前發表在國際著名期刊《先進材料》上。  目前,OLED照明引起了學術界和產業界的極大關注。由於藍色磷光材料的穩定性一直沒有解決,螢光/磷光混合發光被認為是實現OLED照明應用的最佳途徑,混合型白光OLED成為有機發光研究領域的一大熱點。
  • 歐司朗克服LED晶片的Droop效應 提高發光效率
    打開APP 歐司朗克服LED晶片的Droop效應 提高發光效率 發表於 2018-04-24 06:41:00 日前,LED光電巨頭歐司朗宣布
  • 如何看懂OLED與LED發光原理的區別
    在這種背景之下,OLED應時而生,為廣大商家開闢新的市場提供了廣闊的前景,那麼OLED和LED的區別到底在哪,它們的發光原理又是什麼,下面我們一起來探討一下  LED用的是金屬材料,而oled用的是有機物材料,兩者的發光原理是一樣的,區別在於oled不需要背光源,自己本身會發光,是採用發光二極體陣列組成.亮度要比LED液晶高,厚度更薄,是今後LED液晶屏的替代品.LED液晶屏需要背光源
  • 出光和索尼宣布深藍色螢光OLED發光效率首次超越25%
    出光興產公司和索尼公司宣布在OLED電視材料領域取得新的突破進展,深藍色螢光OLED的發光效率首次實現超越了業界定律25%的界限,成功達到了28.5%,這是目前世界上該技術能達到的最高的發光效率。索尼方面認為,發光效率的提升,將為索尼推出大屏幕OLED電視做準備。
  • 武漢大學新研究:橙紅光OLED效率達到29.2%
    最近,熱活化延遲螢光(TADF)材料以其獨特性能獲得廣泛關注,被認為是繼傳統螢光材料和重金屬配合物磷光材料之後最具有發展潛力的第三代發光材料。在過去幾年中,TADF材料的電致發光性能獲得了長足進步。在天藍光區域,其外量子效率(EQE)已接近37%;在綠光區域,其EQE也已超過30%。而作為全色發光不可或缺的成分,橙紅光TADF材料的發展則明顯滯後。
  • 有機電致發光顯示器的研究進展*
    本文在簡要介紹有機電致發光器件工作原理的基礎上,對有機電致發光材料、有機電致發光顯示器(OLED)面板及其驅動技術的相關進展進行了闡述。最後,論文簡單分析OLED的應用前景,展望了OLED在未來的產業化進程中所面臨的機遇和挑戰。
  • 教你如何提高LED的發光效率
    由於LED材料折射率很高,當晶片發出光在晶體材料與空氣界面時,會發生全反射現象,晶體本身對被折回的光有相當一部分的吸收,於是大大降低了外部出光效率。   如何提高LED的發光效率   早期LED組件發展集中在提升其內部量子效率,方法主要是利用提高晶片的質量及改變晶片的結構
  • 氧化脫羧合成1-烯烴研究獲新進展
    近日,揚州大學生物科學與技術學院教授王喜慶團隊在通過氧化脫羧合成1-烯烴方面取得重要研究進展,相關成果發表在美國化學期刊ACS Catalysis上。1-烯烴作為一種理想的下一代能源物質與重要的化工原料,其合成方式受到廣泛關注。目前,1-烯烴主要通過傳統的石油工業產品乙烯聚合而成,但通過該方法只能得到偶數碳鏈長度的烯烴。
  • 光致發光檢測提高太陽能矽片的光電效率
    YIELDMASTER PL–Wafer是ISRA VISION和GP Solar推出的新一代非接觸式光致發光檢測系統,為太陽能矽片提供高精度、高速度的質量保證。憑藉其先進的技術特點,該系統可以準確預測基於原始矽片分析的電池效率。由於只需投資於加工良好的矽片,操作者大大降低了生產成本。  YIELDMASTER PL–Wafer採用光致發光技術。
  • 國家納米中心在上轉換圓偏振發光研究中取得進展
    自從上轉換圓偏振發光(UC-CPL)這一概念提出至今,基於不同發光機制的UC-CPL已被一一報導,受到廣泛關注。目前,所得到的發光不對稱因子(glum)普遍較低,尋找一種能夠提升UC-CPL的發光不對稱因子,併兼具良好發光效率的方法,已成為上轉換圓偏振發光領域的重要問題。