數學上登峰造極的笛卡爾直角坐標系,為何在生活中沒有多大應用?

2020-12-06 萬物研究員

現實生活中用不了的直角坐標系!

幾何圖形是直觀的,而代數方程是比較抽象的,能不能把幾何圖形與代數方程結合起來,也就是說能不能用幾何圖形來表示方程呢?法國數學家笛卡爾反覆思考這個問題:要想達到此目的,關鍵是如何把組成幾何圖形的點和滿足方程的每一組「數」掛上鉤,他苦苦思索,最後以蜘蛛結網為靈感,牆角直角為原型,最終創立的直角坐標系。

直角坐標系的創建,在代數和幾何上架起了一座橋梁,它使幾何概念用數來表示,幾何圖形也可以用代數形式來表示。由此笛卡爾在創立直角坐標系的基礎上,創造了用代數的方法來研究幾何圖形的數學分支——解析幾何(這可是高中時候的一大噩夢啊), 他大膽設想:如果把幾何圖形看成是動點的運動軌跡,就可以把幾何圖形看成是由具有某種共同特徵的點組成的。舉一個例子來說,我們可以把圓看作是動點到定點距離相等的點的軌跡,於是代數和幾何就這樣合為一家人了 。

那麼數學上璀璨的明珠為何在普通人的生活中用到的不怎麼多呢?

小編認為原因有以下幾點:

1、直角坐標系元素較多。兩根坐標軸得垂直,且各有方向。得有原點,兩條軸得有對應的刻度單位。生活中假如要給某人指路,用直角坐標系就得這樣說:以你為原點,以你正前方為y軸正方向,以你正方為x軸正方向,刻度取為100米,現在你需要去(-300,400)的地方,別說走的人了,說的人頭都大。

2、普通人是生活中,可能有人對直角坐標系不了解,雖然說現在高材生比比皆是,但未曾讀書的人也很多。

3、還有更簡單的表示方法,比如極坐標系,比如在草原上找羊群,可以這樣描述:在西偏北30度距你5公裡處。這種表示方法更簡單更容易理解。除此之外還有最直觀的的描述,比如1裡面那個可以描述為:你先向左走大概300米,路口右轉再走大概400米,這就很容易理解了。

所以直角坐標系在生活中並不見得好用,但這僅僅指的是生活中,對於其他的,比如工程上,建築上,直角坐標系還是非常有用的。

您可能還想看(點擊藍字即可閱讀)

「豈有此理·數學卷」數學界的諾貝爾獎!

「豈有此理·數學卷」完美的歐拉公式!

「豈有此理·數學卷」如何證明1=2?

「豈有此理·數學卷」穿越歷史的愛!

溫馨提示

本文內容有 部分素材 來源於網絡,若有侵權,請聯繫刪除!

小編學識有限,難免出錯,敬請大家指出指導,謝謝!

相關焦點

  • 笛卡爾:坐標系中有鬼神?我的甜心克裡斯蒂娜!
    笛卡爾:……?未來人:您怎麼發明的坐標系?您知道你的坐標系對高中生帶來多大的困惑嗎?笛卡爾面帶驚訝:沒想到給他們帶來如此的困惑,不過坐標系還是給後世帶來極大便利的。如果沒有我的坐標系,你們將寸步難行。至於坐標系的發明,我只能告訴你:我的靈感來自蜘蛛網。未來人:年輕人都認為你是一位偉大的數學家,不知道你是一位偉大的神學家和哲學家。
  • 數學平面直角坐標系-坐標方法的簡單應用-2
    一、平面直角坐標系的概念及點的坐標特徵概念:平面內兩條互相垂直、原點重合的數軸組成的圖形。大家把概念回想一下,我們在第一節課中在建立平面後,平面被坐標軸分成四部分,也就是說平面直角坐標系內有四象限。象限是從右再起按逆時針方向排列的,且坐標軸上的點不屬於任何象限。如圖所示:通過建立平面直角坐標系,在坐標系內描出一些點,並能夠分析歸納出各點的坐標有什麼特點,在各個象限內的點的坐標有什麼特點。
  • 初一數學下冊知識點:平面直角坐標系
    一、目標與要求     1.解有序數對的應用意義,了解平面上確定點的常用方法。     2.培養學生用數學的意識,激發學生的學習興趣。     3.掌握坐標變化與圖形平移的關係;能利用點的平移規律將平面圖形進行平移;會根據圖形上點的坐標的變化,來判定圖形的移動過程。
  • 嘆息:科學史差點就是裴秀坐標系而不是笛卡爾
    笛卡爾坐標系從初中時候我們就知道,描述經典力學世界中的物體時要使用笛卡爾坐標系,而且右手法則的應用更是十分廣泛。笛卡爾坐標系是直角坐標系和斜坐標系的統稱。指相交於原點的兩條(三條)數軸,構成了平面(立體)的放射坐標系。
  • 初一數學,學習平面直角坐標系中,需注意的問題
    初一數學下冊,學到平面直角坐標系,同學們需要注意一些問題。小學我們也涉及到了這個知識點的,只是沒有建系,用橫坐標,縱坐標來表示了,到現在,我們學這個知識點的時候,就要掌握,橫坐標是用x軸表示,縱坐標是用y軸表示。
  • 平面直角坐標系-第七章-1
    前言類似於用「第幾排第幾列」來確定位置,在數學中可以通過建立坐標系,用有順序的兩個數來刻畫平面內點的位置。>4、平面直角坐標系的點的特徵5、畫平面直角坐標系6、坐標方法的簡單應用學習內容一、認識有序數對
  • 2019中考數學平面直角坐標系的知識點
    中考數學平面直角坐標系的知識點 平面直角坐標系 1.平面直角坐標系:(1)在平面內兩條有公共點並且互相垂直的數軸就構成了平面直角坐標系,通常把其中水平的一條數軸叫橫軸或軸,取向右的方向為正方向;鉛直的數軸叫縱軸或軸,取向上的方向為正方向;兩數軸的交點叫做坐標原點。
  • 初中數學:平面直角坐標系的知識點,你掌握了嗎?
    今天明明老師向大家分享平面直角坐標系的相關知識點,希望對你有所幫助。下面我們先來了解平面直角坐標系是如何構成的平面直角坐標系的定義:在平面內有公共原點,而且相互垂直的兩條數軸,就構成了平面直角坐標系。簡稱直角坐標系。
  • 七年級數學——平面直角坐標系小結
    利用平面直角坐標系可以把平面上的圖形用數字來描述,可以看作溝通幾何和代數的一座橋梁,充分體現了數形結合思想。分述1、坐標坐標是利用有序數對來描述的,它可以描述平面直角坐標系內所有的點。平面直角坐標系內的點與有序實數對是一一對應的。
  • 【數學名家】 解析幾何之父——笛卡爾
    笛卡爾從小就特別愛讀書,不管理解不理解都拿來看。他對自然科學特別感興趣,有一次,父親見他拿著一本很深奧的數學論著在認真地讀,感覺很好奇,便問他從書上學到了什麼。小笛卡爾高興地告訴父親:「爸爸,我發現書上的圖形很多,我在看它們到底是怎麼回事呢?」     1618年,歐洲爆發了戰爭。1620年笛卡爾參軍了。
  • 2021年中考數學知識點:平面直角坐標系
    中考網整理了關於2021年中考數學知識點:平面直角坐標系,希望對同學們有所幫助,僅供參考。   1、定義:   平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系。
  • 一線老師整理的兩張手寫筆記,吃透它,笛卡爾坐標系暑假夠用了
    有八年級的學生家長私信我,說孩子暑假八年級平面直角坐標系已經全部上完了,但是感覺孩子學得不夠紮實,對於基礎的定義還不夠明確,希望能給孩子梳理一下平面直角坐標系的基礎知識點。那麼今天我就結合平時的課堂筆記,給正在暑假上預科的八年級學生梳理一下平面直角坐標系的知識點。
  • 七年級數學下冊直角坐標系專題訓練,期末考試必有,建議收藏
    編首語:七年級數學下冊的直角坐標系是七年級數學內容當中比較簡單的知識,這一內容的知識主要讓學生明白象限的認識,直角坐標系中橫坐標和縱坐標的理解以及應用。凡事,越努力越幸運以下是有關直角坐標系的專題訓練,做完這些題目,並理解題目中所涵蓋的知識,能做到舉一反三
  • 【笛卡爾坐標/點積/叉積】圖解高等數學-下 03
    10 空間中的向量和運動當一個物體在空間中運動時, 其坐標方程 x=f(t), y=g(t), z=h(t) 提供了物體運動和路徑的方程, 坐標為時間的函數
  • 神奇的「虛數i」,為何讓數學擁有如此迷人魅力?
    「虛數i」的發現在數學史上有著舉足輕重的作用。「虛數i」到底是什麼?為何如此神奇?到底有哪些重要作用?這還得從看似平常卻作用巨大的「數軸」說起!在初中的數學學習中,「數軸」是學習數學的重要工具。自然數、整數、負數、無理數等「一切數的問題」只有放在「數軸」中去討論,才不會顯得亳無頭緒。在虛數還沒發現之前,單條數軸,足以描述所有的實數。但到了17世紀時,數學家笛卡爾發現了虛數,這時一條數軸己顯得不夠用了,於是創立了著名的「笛卡爾直角坐標系」。「直角坐標系」是我們進入初中就「必須要求」掌握的重要工具。
  • 解析:直角坐標機器人的特點及應用舉例
    直角坐標機器人又稱單軸機械手,工業機械臂,電缸等,是以XYZ直角坐標系統為基本數學模型,以伺服電機、步進電機為驅動的單軸機械臂為基本工作單元,以滾珠絲杆、同步皮帶、齒輪齒條為常用的傳動方式所架構起來的機器人系統,可以完成在XYZ三維坐標系中任意一點的到達和遵循可控的運動軌跡。
  • 借鑑平面直角坐標系創新評課法
    原標題:借鑑平面直角坐標系創新評課法在教師專業化成長道路上,會聽課、能評課是其必備的能力之一。其中,聽課即聽課者能夠做出詳細高效的課堂記錄,評課即聽課者能藉助課堂教學評課量表等記錄,依據教師課堂教學中的實際表現,最終形成自己對一節課的評價。
  • 初中數學:平面直角坐標系基礎知識講解,須用心記憶!
    大家知道北大最著名的院系是什麼系嗎?早在蔡元培先生任北大校長時,就列數學係為北大第一系,這種傳統一直保持到現在。為什麼數學系在高校中有如此重要的地位?著名數學家華羅庚在《人民日報》精彩描述了數學在「宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,生物之謎,日用之繁」等方面無處不有重要貢獻。 由此可見,數學之所以能夠成為主科,是有一定原因的。小學是數學打基礎的階段,這個時期所學的基本都是基礎的知識,而到了初中後,數學的學習難度就慢慢加大了,出現了很多在小學沒有接觸到的知識點,因此,學生在學的時候就得多加用心才行。
  • 中考數學第一輪複習9,直角坐標系與函數基礎考點梳理,有備無患
    縱觀近5年中考,平面直角坐標系與函數基礎常考象限內點的坐標特徵、建立適當直角坐標系確定點的坐標、函數值,所佔分值3至6分。預計2019年中考可能會在選擇、填空題單獨考察特殊點的坐標特徵、函數自變量的取值範圍及函數值、函數圖像的分析,在解答題中與圖形的性質、圖形的變化綜合考察確定點的坐標方法。我們來梳理下這章的考點,回顧歷年中考真題,做到胸有成竹。
  • 中考數學專題系列二十一:平面直角坐標系典型題型歸納
    中考數學專題系列二十一:平面直角坐標系典型題型歸納作者 卜凡平面直角坐標系這一節的內容是數形結合思想、分類討論思想、整體思想、轉化思想的一個綜合運用,所以在我們看來非常簡單的內容,實則初次接觸的孩子們還是困難重重