一個線性變換的作用可以包含旋轉、縮放和投影三種類型的效應。
奇異值分解正是對線性變換這三種效應的一個析構。A=,和是兩組正交單位向量,是對角陣,表示奇異值,它表示我們找到了和這樣兩組基,A矩陣的作用是將一個向量從這組正交基向量的空間旋轉到這組正交基向量空間,並對每個方向進行了一定的縮放,縮放因子就是各個奇異值。如果維度比大,則表示還進行了投影。可以說奇異值分解將一個矩陣原本混合在一起的三種作用效果,分解出來了。
而特徵值分解其實是對旋轉縮放兩種效應的歸併。(有投影效應的矩陣不是方陣,沒有特徵值)特徵值,特徵向量由Ax=x得到,它表示如果一個向量v處於A的特徵向量方向,那麼Av對v的線性變換作用只是一個縮放。也就是說,求特徵向量和特徵值的過程,我們找到了這樣一組基,在這組基下,矩陣的作用效果僅僅是存粹的縮放。對於實對稱矩陣,特徵向量正交,我們可以將特徵向量式子寫成,這樣就和奇異值分解類似了,就是A矩陣將一個向量從x這組基的空間旋轉到x這組基的空間,並在每個方向進行了縮放,由於前後都是x,就是沒有旋轉或者理解為旋轉了0度。
總結一下,特徵值分解和奇異值分解都是給一個矩陣(線性變換)找一組特殊的基,特徵值分解找到了特徵向量這組基,在這組基下該線性變換隻有縮放效果。而奇異值分解則是找到另一組基,這組基下線性變換的旋轉、縮放、投影三種功能獨立地展示出來了。我感覺特徵值分解其實是一種找特殊角度,讓旋轉效果不顯露出來,所以並不是所有矩陣都能找到這樣巧妙的角度。僅有縮放效果,表示、計算的時候都更方便,這樣的基很多時候不再正交了,又限制了一些應用。
建議小夥伴們看看下面網址,老外的教學真是神了。
http://www.ams.org/samplings/feature-column/fcarc-svd
作者:趙文和
連結:https://www.zhihu.com/question/19666954/answer/54788626
來源:知乎
著作權歸作者所有,轉載請聯繫作者獲得授權。