矩陣的特徵值分解目的就是提取出一個矩陣最重要的特徵。
這其實是在平面上對一個軸進行的拉伸變換(如藍色的箭頭所示),在圖中,藍色的箭頭是一個最主要的變化方向(變化方向可能有不止一個),如果我們想要描述好一個變換,那我們就描述好這個變換主要的變化方向就好了。反過頭來看看之前特徵值分解的式子,分解得到的Σ矩陣是一個對角陣,裡面的特徵值是由大到小排列的,這些特徵值所對應的特徵向量就是描述這個矩陣變化方向(從主要的變化到次要的變化排列)。
當矩陣是高維的情況下,那麼這個矩陣就是高維空間下的一個線性變換,這個線性變化可能沒法通過圖片來表示,但是可以想像,這個變換也同樣有很多的變換方向,我們通過特徵值分解得到的前N個特徵向量,那麼就對應了這個矩陣最主要的N個變化方向。我們利用這前N個變化方向,就可以近似這個矩陣(變換)。也就是之前說的:提取這個矩陣最重要的特徵。總結一下,特徵值分解可以得到特徵值與特徵向量,特徵值表示的是這個特徵到底有多重要,而特徵向量表示這個特徵是什麼,可以將每一個特徵向量理解為一個線性的子空間,我們可以利用這些線性的子空間幹很多的事情。不過,特徵值分解也有很多的局限,比如說變換的矩陣必須是方陣。