特徵值和特徵向量的物理意義,振動離不開它

2021-03-01 聲振之家

來源:搜狐博客-甜蜜旮旯

長時間以來一直不了解矩陣的特徵值和特徵向量到底有何意義(估計很多兄弟有同樣感受)。知道它的數學公式,但卻找不出它的幾何含義,教科書裡沒有真正地把這一概念從各種角度實例化地進行講解,只是一天到晚地列公式玩理論——有個屁用啊。

根據特徵向量數學公式定義,矩陣乘以一個向量的結果仍是同維數的一個向量,因此,矩陣乘法對應了一個變換,把一個向量變成同維數的另一個向量,那麼變換的效果是什麼呢?這當然與方陣的構造有密切關係,比如可以取適當的二維方陣,使得這個變換的效果就是將平面上的二維向量逆時針旋轉30度,這時我們可以問一個問題,有沒有向量在這個變換下不改變方向呢?可以想一下,除了零向量,沒有其他向量可以在平面上旋轉30度而不改變方向的,所以這個變換對應的矩陣(或者說這個變換自身)沒有特徵向量(注意:特徵向量不能是零向量),所以一個變換的特徵向量是這樣一種向量,它經過這種特定的變換後保持方向不變,只是進行長度上的伸縮而已(再想想特徵向量的原始定義Ax = cx, cx是方陣A對向量x進行變換後的結果,但顯然cx和x的方向相同)。

這裡給出一個特徵向量的簡單例子,比如平面上的一個變換,把一個向量關於橫軸做鏡像對稱變換,即保持一個向量的橫坐標不變,但縱坐標取相反數,把這個變換表示為矩陣就是[1 0; 0 -1],顯然[1 0; 0 -1][a b]ᵀ=[a -b]ᵀ,這正是我們想要的效果,那麼現在可以猜一下了,這個矩陣的特徵向量是什麼?想想什麼向量在這個變換下保持方向不變,顯然,橫軸上的向量在這個變換下保持方向不變(記住這個變換是鏡像對稱變換,那鏡子表面上(橫軸上)的向量當然不會變化),所以可以直接猜測其特徵向量是[a 0]ᵀ(a不為0),還有其他的嗎?有,那就是縱軸上的向量,這時經過變換後,其方向反向,但仍在同一條軸上,所以也被認為是方向沒有變化,所以[0 b]ᵀ(b不為0)也是其特徵向量。

綜上,特徵值只不過反映了特徵向量在變換時的伸縮倍數而已,對一個變換而言,特徵向量指明的方向才是很重要的,特徵值似乎不是那麼重要;但是,當我們引用了Spectral theorem(譜定律)的時候,情況就不一樣了。

Spectral theorem的核心內容如下:一個線性變換(用矩陣乘法表示)可表示為它的所有的特徵向量的一個線性組合,其中的線性係數就是每一個向量對應的特徵值,寫成公式就是:

從這裡我們可以看出,一個變換(矩陣)可由它的所有特徵向量完全表示,而每一個向量所對應的特徵值,就代表了矩陣在這一向量上的貢獻率——說的通俗一點就是能量(power),至此,特徵值翻身做主人,徹底掌握了對特徵向量的主動:你所能夠代表這個矩陣的能量高低掌握在我手中,你還吊什麼吊?

我們知道,一個變換可由一個矩陣乘法表示,那麼一個空間坐標系也可視作一個矩陣,而這個坐標系就可由這個矩陣的所有特徵向量表示,用圖來表示的話,可以想像就是一個空間張開的各個坐標角度,這一組向量可以完全表示一個矩陣表示的空間的「特徵」,而他們的特徵值就表示了各個角度上的能量(可以想像成從各個角度上伸出的長短,越長的軸就越可以代表這個空間,它的「特徵」就越強,或者說顯性,而短軸自然就成了隱性特徵),因此,通過特徵向量/值可以完全描述某一幾何空間這一特點,使得特徵向量與特徵值在幾何(特別是空間幾何)及其應用中得以發揮。

關於特徵向量(特別是特徵值)的應用實在是太多太多,近的比如俺曾經提到過的PCA方法,選取特徵值最高的k個特徵向量來表示一個矩陣,從而達到降維分析+特徵顯示的方法;近的比如Google公司的成名作PageRank,也是通過計算一個用矩陣表示的圖(這個圖代表了整個Web各個網頁「節點」之間的關聯)的特徵向量來對每一個節點打「特徵值」分;再比如很多人臉識別,數據流模式挖掘分析等方面,都有應用,有興趣的兄弟可以參考IBM的Spiros在VLDB『 05,SIGMOD 』06上的幾篇文章。

特徵向量不僅在數學上,在物理,材料,力學等方面(應力、應變張量)都能一展拳腳,有老美曾在一本線代書裡這樣說過「有振動的地方就有特徵值和特徵向量」,確實令人肅然起敬+毛骨悚然.

聲明:本微信轉載文章出於非商業性的教育和科研目的,並不意味著支持其觀點或證實其內容的真實性。版權歸原作者所有,如轉載稿涉及版權等問題,請立即聯繫我們,我們會予以更改或刪除相關文章,保證您的權利!

相關焦點

  • 深入理解矩陣特徵值與特徵向量的物理意義
    顧名思義,特徵值和特徵向量表達了一個線性變換的特徵。在物理意義上,一個高維空間的線性變換可以想像是在對一個向量在各個方向上進行了不同程度的變換,而特徵向量之間是線性無關的,它們對應了最主要的變換方向,同時特徵值表達了相應的變換程度。
  • 矩陣的特徵值與特徵向量
    ,也稱v為特徵值λ對應的特徵向量。求解特徵值和特徵向量的步驟如下:(1) 計算特徵多項式|A-λE|;(2) 求|A-λE|=0的所有根,即A的所有特徵值;(3) 對每個特徵值λ0,求解齊次線性方程組注意:1、特徵分解只針對方陣而言!!!奇異值分解用於非方陣!2、一個矩陣和一個向量相乘的意義在於對該向量做個旋轉或伸縮變換。3、一個矩陣的轉置與它相乘的結果是對稱陣!即ATA是一個對稱陣。
  • 矩陣特徵值與特徵向量的幾何意義
    線性變換是指一個 n 維列向量被左乘一個 n 階矩陣後得到另一個 n 維列向量,它是同維向量空間中的把一個向量線性映射成了另一個向量。即:Y=AX 其中Y, X∈Rn,A=(aij)n×n,一個向量被矩陣相乘,表示對這個向量做了一個線性變換。如果變換後還是這個向量本身乘以一個常數,這個常數就叫特徵值。
  • 特徵值和特徵向量計算證明題
    >求n階矩陣 的特徵值與特徵向量 因為A可逆, 所以 為 的特徵值, 對應的特徵向量也是(1, 1,>的公共特徵向量, 對應的特徵值為 .): ; 因為有三個不同的特徵值, 所以對應的特徵向量線性無關, 所以A
  • 線性代數的本質:特徵向量與特徵值
    spm_id_from=333.788.videocard.0本篇來講一下線性代數中非常重要的一個概念:特徵向量/特徵值。接下來簡單介紹一下特徵值和特徵向量的計算方法,首先根據剛才的介紹,一個矩陣A的特徵向量,在經過這個矩陣所代表的線性變換之後,沒有偏離其所張成的直線,而只是發生了伸縮或方向改變,所以首先可以寫出下面的式子
  • 特徵值和特徵向量的幾何意義、計算及其性質
    一、特徵值和特徵向量的幾何意義特徵值和特徵向量確實有很明確的幾何意義
  • 線性代數-5.4方陣的特徵值與特徵向量
    ,它和上面的表達式可能相等也可能互為相反數,但這不影響特徵值的計算.的特徵值和特徵向量的特徵值和特徵向量課堂索引:22 第五章 5.4特徵值與特徵向量5.4.4例題45.課堂索引:22 第五章 5.4特徵值與特徵向量5.4.4例題34.
  • 特徵值和特徵向量知識點小結
    相對於向量與線性方程組部分來說,本章不是線性代數這門課的理論重點,但卻是一個考試重點,歷年考研真題都有相關題目,而且最有可能是綜合性的大題。  特徵值和特徵向量之所以會得到如此青睞,大概是因為解決相關題目要用到線代中的大量內容--即有行列式、矩陣又有線性方程組和線性相關,"牽一髮而動全身";著重考察這樣的知識點,在保證了考察面廣的同時又有較大的出題靈活性。
  • 特徵方程的物理意義
    兩個特徵向量說明了這個線性變換矩陣對於x軸和y軸這兩個正交基是線性不變的。對於其他的線性變換矩陣,我們也可以找到類似的,N個對稱軸,變換後的結果,關於這N個對稱軸線性不變。這N個對稱軸就是線性變換A的N個特徵向量。這就是特徵向量的物理含義所在。所以,矩陣A等價於線性變換A。
  • 圖說冪法求特徵值和特徵向量
    原理很簡單:矩陣乘任一向量(非特徵向量),可將向量往主特徵向量的方向「拉扯」。再用圖示補充一下空間變換、特徵值、特徵向量的概念,如圖(先不考慮紅色的向量)單位圓上的向量(黑色點表示),「特徵值」2,(這裡A的特徵值是2和0.5)。
  • 數學學習如此容易:用Python計算特徵值和特徵向量
    ,那麼這樣的數λ稱為矩陣A特徵值,非零向量x稱為A的對應於特徵值λ的特徵向量。這是n個未知數n個方程的齊次線性方程組,它有非零解的充分必要條件是係數行列式| A-λE|=0。特徵值 是方程式Ax=ax的標量解(scalar solutions),其中A是一個二維矩陣,而x是一維向量。 特徵向量 實際上就是表示特徵值的向量。
  • 矩陣的瑰寶:深入挖掘特徵值和特徵向量,直觀地看抽象概念
    當一個向量經過一個線性變換時,通常它會偏離原來的方向。然而,有些類型的向量不會被矩陣改變方向。這就是這個矩陣的特徵向量。當特徵向量乘以這個矩陣時,特徵向量只是乘以特徵值,使這個向量的長度改變,而方向不會改變。特徵向量和特徵值很少是整數。
  • 2015考研數學大綱解析:特徵值和特徵向量學習方法指導
    當然,特徵值和特徵向量部分也沒有發生變化。下面我以特徵值和特徵向量為例,深度解析考研數學大綱,希望對大家的學習有所幫助。  一、考試內容  矩陣的特徵值和特徵向量的概念、性質  相似矩陣的概念及性質  矩陣可相似對角化的充分必要條件及相似對角矩陣  實對稱矩陣的特徵值、特徵向量及其相似對角矩陣  二、考試要求  理解矩陣的特徵值和特徵向量的概念及性質,會求矩陣特徵值和特徵向量;理解相似矩陣的概念
  • 2018考研數學線代特徵值特徵向量
    本文為廣大考生整理2018考研數學線代特徵值特徵向量,更多考研數學怎麼複習、考研數學題型、考研數學大綱、考數學試題等備考資料,歡迎訪問北京研究生招生信息網。 【中公考研原創,轉載請註明出處】一、矩陣的特徵值與特徵向量問題1.矩陣的特徵值與特徵向量的概念理解以及計算問題這一部分要求會求給定矩陣的特徵值與特徵向量,常考的題型有數值型矩陣的特徵值與特徵向量的計算和抽象型矩陣的特徵值與特徵向量的計算。
  • 2013考研數學衝刺複習:矩陣的特徵值與特徵向量講解
    矩陣的特徵值與特徵向量問題是考研數學中一常考點,然而在最後衝刺這一階段,同學們在做真題和模擬題《考研數學絕對考場最後八套題》時對這一考點還存在一些疑惑,對此,文都考研數學的輔導老師特撰此文講解矩陣的特徵值與特徵向量問題,助同學們考研成功。
  • 矩陣的特徵值分解的物理意義
    矩陣的特徵值分解目的就是提取出一個矩陣最重要的特徵。這其實是在平面上對一個軸進行的拉伸變換(如藍色的箭頭所示),在圖中,藍色的箭頭是一個最主要的變化方向(變化方向可能有不止一個),如果我們想要描述好一個變換,那我們就描述好這個變換主要的變化方向就好了。
  • 【特徵向量新解法】數學天才陶哲軒和三位物理學家的新發現
    它的物理意義是:一個矩陣A乘以一個向量x,就相當於做了一個線性變換λx。方向仍然保持不變,只是拉伸或者壓縮一定倍數λ。我完全沒想過,子矩陣的特徵值編碼了原矩陣特徵向量的隱藏信息。這麼短、這麼簡單的東西,早就應該出現在教科書裡了!!!特徵向量和特徵值的幾何本質,其實就是空間矢量的旋轉和縮放。而中微子的三個味(電子,μ子,τ子),不就相當於空間中的三個向量之間的變換嗎?中微子振蕩是一種量子力學現象。
  • 2020考研數學線性代數重點內容與常見題型:特徵值與特徵向量
    特徵值、特徵向量是線性代數的重點內容,是考研的重點之一,題多分值大。  1.重點內容  特徵值和特徵向量的概念及計算  方陣的相似對角化  實對稱矩陣的正交相似對角化  2.常見題型  (1)數值矩陣的特徵值和特徵向量的求法  (2)抽象矩陣特徵值和特徵向量的求法  (3)矩陣相似的判定及逆問題
  • 「神龍考研」考研數學考前預測重點題型之特徵值和特徵向量
    矩陣的特徵值和特徵向量是線性代數重要的基礎理論之一,這部分主要給出了矩陣特徵值和特徵向量的定義、性質和求法,討論了相似矩陣的概念、性質及相似對角化的條件,得出了矩陣相似對角化的方法. 實對稱矩陣的對角化是用正交變換化二次型為標準形的基礎.
  • Python求解特徵向量和拉普拉斯矩陣
    學過線性代數和深度學習先關的一定知道特徵向量和拉普拉斯矩陣,這兩者是很多模型的基礎,有著很重要的地位,那用python要怎麼實現呢?numpy和scipy兩個庫中模塊中都提供了線性代數的庫linalg,scipy更全面些。