1965年,我國科學家在世界上首次人工合成出與天然分子化學結構相同、有完整生物活性的蛋白質——結晶牛胰島素,開闢了人工合成蛋白質的時代。
50多年後的今天,我國科學家在最新一期國際科學期刊《自然》上發表論文,宣布首次人工創造出有生命活性的單染色體真核細胞,開啟了合成生物學研究的新時代。
人類能否創造生命?此次突破意義何在?
人造纖維、人造衛星、人造材料……在我們的潛意識裡,只要是人造的東西都是沒有生命的。人類真能「創造」出生命嗎?
1996年,克隆羊「多利」誕生。人們認為,這就是所謂的「人造生命」。然而,科學共同體認為,克隆僅僅是「複製」了已有的生命體,還不是真正意義上的「創造」。人造生命,應該是利用生命體性狀由遺傳基因決定的原理,通過人工設計併合成新的遺傳基因,「從頭到腳」創造與地球現有生命體均不同的全新生命體。
因此,從這個意義上講,「100%人造生命」還遠未出現。但我國科學家的最新研究成果足以稱得上這條「長徵路」上的重要突破,意義非凡。
中科院分子植物卓越中心/植生生態所合成生物學重點實驗室覃重軍團隊以釀酒酵母為實驗對象,採用工程化精準設計方法,使用CRISPR-Cas9基因編輯技術對釀酒酵母16條染色體的全基因組進行了大規模修剪、重新排列,最終「創造」了將幾乎所有遺傳信息融合進1條超長線型染色體的酵母細胞。「體檢報告」表明,雖然動了「大手術」,但「全新版」酵母細胞的生長、功能和基因表達均與天然酵母相似。
中科院深圳先進技術研究院研究員戴俊彪認為,這一結果表明,自然進化而成的現有真核生物(至少釀酒酵母)染色體數目與功能之間並不存在直接的決定關係,染色體的數目可以進行人為改變,同時對細胞生長不造成顯著的影響。這顛覆了「染色體的天然三維結構決定基因表達」的傳統觀念。
與前人對單個染色體或一條長鏈DNA進行小修、小補、小合成不同的是,業內專家認為,該成果實現了對一個物種的染色體數目進行系統和大規模改造。這表明,天然複雜的生命體可以通過人工改造變簡約,最終實現「人造」自然界中不存在的全新生命。
染色體數目「16合1」,目的何在?
在生物教科書中,自然界中的生命體按細胞結構劃分,可分為真核生物和原核生物。真核生物細胞通常有多條線型染色體,原核生物細胞一般有1條環型染色體。麵包發酵和釀酒過程中使用的酵母是生物研究中最常使用的典型真核生物。
2013年5月8日,覃重軍大膽猜想,真核細胞與原核細胞的劃分並非「涇渭分明」,二者完全可以相互跨越。即,真核細胞也可以改造成1條線型、甚至是環型的染色體,裝載所有遺傳物質、完成正常細胞功能。於是這一天,他將自己的猜想寫進了筆記本。
隨後,他與副研究員薛小莉設計了精準的工程設計總體方案,博士生邵洋洋從2013年開始研發高效的染色體融合操作方法。2016年10月,團隊成功合成出第一個單染色體真核酵母細胞,而後都在對其進行「系統體檢」。
自然科研機構中國區總監保羅·埃文斯說,儘管融合操作顯著改變了三維染色體結構,但經證實,改造後的酵母細胞出乎意料地穩健,在不同的培養條件下,沒有表現出重大的生長缺陷。
「天然酵母染色體的遺傳基因有許多重複序列,這增加了細胞的不穩定性,容易導致突變或變異。而我們創造的全新酵母細胞刪除了這些重複序列,化繁為簡。」覃重軍說。
他透露,將酵母染色體數量「16合1」的最終目的是發現自然界中複雜現象背後的規律內核,最終用於治療人類疾病。「在保證細胞正常存活的前提下,染色體數目簡化得越多,越容易更精準地找到生命體的遺傳密碼到底哪些可變、哪些不可變。」