毫米波雷達的工作原理及發展趨勢

2020-11-22 電子發燒友

要說這幾年的熱詞,自動駕駛是當仁不讓的幾個top之一。不說特斯拉總裁馬斯克頻頻上熱搜了,就國內而言,網際網路企業跨行做汽車也不少見。核心裝備的雷射雷達當然是備受關注。與非網小編在前段時間為大家介紹過,感興趣的可以看這裡。今天,我們不講雷射雷達,要跟大家說一說毫米波雷達。為什麼要講這個?主要是當前雷射雷達這麼火,但主流的自動駕駛方案卻並未完全拋棄毫米波雷達,今天就是來探索一下其中的緣由。

毫米波雷達

       作為ADAS不可或缺的核心傳感器類型,毫米波雷達在汽車領域其實已經有多年應用。汽車引入毫米波雷達最初主要是為了實現盲點監測和定距巡航,而隨著技術的發展這兩個特性也漸漸從高端車專用普及到了幾乎所有車型。毫米波實質上就是電磁波。毫米波的頻段比較特殊,其頻率高於無線電,低於可見光和紅外線,頻率大致範圍是10GHZ-200GHZ。

測距原理跟一般雷達一樣,即把無線電波發出去,然後接收回波,利用障礙物反射波的時間差確定障礙物距離,利用反射波的頻率偏移確定相對速度。

為什麼毫米波雷達沒有被拋棄

       首先就是大家都知道的天氣原因,雷射的波長遠小於毫米波雷達,所以霧霾,雨雪等極端天氣導致雷射雷達性能會大打折扣,由於毫米波導引頭穿透霧,煙,灰塵的能力強,所以相比於雷射雷達是一大優勢。相比起雷射雷達,毫米波雷達的探測距離可以輕鬆超過200米,而雷射雷達一般不到150米。在高速行駛的場景裡,毫米波雷達更適合。

其次,由於雷射雷達在收發器和組裝工藝要求高,所以成本比較難降下來。而毫米波雷達因為它是矽基的晶片,沒有特別昂貴和複雜的工藝,所以毫米波雷達成本更具優勢。毫米波雷達目前的價格大概在1.5千左右,而雷射雷達的價格目前仍然是以萬作為單位計算的。並且由於雷射雷達獲取的數據量遠超毫米波雷達,所以需要更高性能的處理器處理數據,更高性能的處理器同時也意味著更高的價格。所以對於工程師而言,在簡單場景中,毫米波雷達仍然是最優選擇。

毫米波雷達晶片發展趨勢

       目前汽車領域的毫米波雷達主要基於FMCW技術,即發射出調頻毫米波信號,並根據首發毫米波之間的頻率差來確定目標的位置以及相對速度。FMCW雷達關注的指標主要是目標區分度和測量解析度,其中目標區分度指的是雷達能分辨的兩個物體之間的最小距離(如果兩個物體之間的距離小於該最小距離則會被雷達認為是一個物體),而測量解析度則是絕對距離的測量精確度。

我們看到的毫米波雷達的第一個趨勢就是從24GHz頻段演進到77GHz頻段。目前,比較常見的車載領域的毫米波雷達頻段有三類,分別是:

24GHz
24GHz這個頻段,目前大量應用於汽車的盲點監測、變道輔助。雷達安裝在車輛的後保險槓內,用於監測車輛後方兩側的車道是否有車、可否進行變道。

77GHz
77GHz這個頻段的頻率比較高,國際上允許的帶寬高達800MHz。這個頻段的雷達性能要好於24GHz的雷達,所以主要用來裝配在車輛的前保險槓上,探測與前車的距離以及前車的速度,實現的主要是緊急制動、自動跟車等主動安全領域的功能。

79GHz
最後是79GHz,這個頻段最大的特點就是其帶寬非常寬,要比77GHz的高出3倍以上,這也使其具備非常高的解析度,可以達到5cm。這個解析度在自動駕駛領域非常有價值,因為自動駕駛汽車要區分行人等諸多精細物體,對帶寬的要求很高,這個頻段在未來的自動駕駛領域會有很廣泛的應用。

根據美國FCC和歐洲ESTI的規劃,24GHz的寬頻段(21.65-26.65GHz)將在2022年過期,在之後汽車在24GHz能用的僅剩下24.05-24.25GHz範圍的窄帶頻譜。反之,在77GHz頻段,汽車雷達將能使用77-81GHz高達4GHz的帶寬。對於FMCW雷達來說,頻率掃描帶寬決定了目標區分度和測量解析度,因此77GHz的FMCW雷達對於24GHz來說目標區分度和測量解析度都有十多倍的提升。

第二個毫米波雷達晶片的重要趨勢是CMOS工藝成為主流。毫米波電路傳統的實現工藝是GaAs等III-V族工藝,但是III-V族工藝的成本過高,同時集成度低無法在晶片上集成數字模塊,因此SiGe這樣的工藝得到了不少應用。而隨著CMOS工藝的特徵尺寸不斷縮小,在28nm節點之後CMOS工藝已經能基本勝任毫米波雷達的波段,因此毫米波雷達也就自然而然轉向CMOS工藝。

第三個重要方向是毫米波雷達也在走向高解析度。這裡的解析度不僅僅是目標測距的解析度,更是指毫米波雷達的空間解析度。盲點監測等傳統汽車毫米波雷達應用只需要雷達監測在視野的一定距離中是否有物體即可,至於該物體是位於視野中的哪一個位置則並不關心。

自動駕駛是大勢所趨,而雷射雷達作為核心的部件,降低成本勢在必行,毫米波雷達從最早的十萬美元,降低到如今的100美元左右也用了十多年的時間。

雷射雷達目前還有一個非常重要的技術是固態雷射雷達,它實際上與傳統雷達、毫米波雷達是一脈相承的,固態雷射雷達實質上就是調整每個發射和接收單元的相位,毫米波雷達也是同樣的原理,只不過毫米波雷達是對電磁波進行操作,器件的實現難度要比對光的頻段上進行相位的改變的難度低很多。未來,固態雷射雷達與毫米波雷達相結合或許是個不錯的選擇。

總結:毫米波雷達是很難被取代的傳感器,雖有不足之處,但全天候的工作狀態是最大優勢。其測速、測距的精度要遠高於視覺傳感器,與雷射雷達相比,穿透力會更好。但是整體來講,這並不衝突,因為未來會走向融合的趨勢,特別是針對自動駕駛駕駛,毋庸置疑三大傳感器會相互融合。

打開APP閱讀更多精彩內容

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容圖片侵權或者其他問題,請聯繫本站作侵刪。 侵權投訴

相關焦點

  • 一文解讀毫米波雷達的發展現狀及發展趨勢
    打開APP 一文解讀毫米波雷達的發展現狀及發展趨勢 發表於 2018-04-24 10:09:25   車載毫米波雷達的原理   車載毫米波雷達通過天線向外發射毫米波,接收目標反射信號,經後方處理後快速準確地獲取汽車車身周圍的物理環境信息(如汽車與其他物體之間的相對距離、相對速度、角度、運動方向等),然後根據所探知的物體信息進行目標追蹤和識別分類,進而結合車身動態信息進行數據融合,最終通過中央處理單元(ECU)進行智能處理。
  • 淺析毫米波雷達的概念和工作原理
    淺析毫米波雷達的概念和工作原理 胡薇 發表於 2018-07-19 09:50:15 無論是雷射雷達還是攝像頭、超聲波傳感器,都容易受惡劣天氣環境影響導致性能降低甚至失效
  • 毫米波雷達的工作原理及優缺點介紹
    打開APP 毫米波雷達的工作原理及優缺點介紹 發表於 2018-04-24 11:10:18 毫米波的理論和技術分別是微波向高頻的延伸和光波向低頻的發展。   所謂的毫米波雷達,就是指工作頻段在毫米波頻段的雷達,測距原理跟一般雷達一樣,也就是把無線電波(雷達波)發出去,然後接收回波,根據收發之間的時間差測得目標的位置數據。毫米波雷達就是這個無線電波的頻率是毫米波頻段。
  • 一種毫米波測速雷達系統的工作原理
    摘要:介紹了一種毫米波測速雷達系統的工作原理,該系統採用高精度譜分析法測量外彈道彈丸速度曲線,並利用最小二乘法擬合方法推出彈丸的初速。分析了測速誤差、精度與測點數、外推步長的關係。該系統將毫米波技術成功應用於火炮或槍枝的內、外彈道參數的測試。
  • 一文了解汽車毫米波雷達工作原理與結構組成
    測距也簡單,可以基於TOF原理,但電磁波傳播速度是光速,所以對於近距離目標測距帶來了一定的挑戰。毫米波雷達作用距離都不太遠,比如汽車或者無人機應用,探測距離很近,回波和發射波間隔非常短,並不適合使用簡單的發射脈衝檢測回波時間差測距方式,所以現在主要採用FMCW(調頻連續波)測距方式較多。
  • 全球與中國汽車毫米波雷達市場現狀調研與發展趨勢分析報告(2020...
    《全球與中國汽車毫米波雷達市場現狀調研與發展趨勢分析報告(2020-2026年)》內容嚴謹、數據翔實,通過輔以大量直觀的圖表幫助汽車毫米波雷達行業企業準確把握汽車毫米波雷達行業發展動向、正確制定企業發展戰略和投資策略。
  • 詳細了解毫米波雷達概念以及原理和產業研究
    詳細了解毫米波雷達概念以及原理和產業研究 李倩 發表於 2018-08-27 17:36:19 毫米波雷達作為唯一可以「全天候全天時」工作的傳感器,是實現汽車ADAS
  • 毫米波不簡單!毫米波雷達測方位原理+優勢
    對於毫米波,大家已不再陌生,本文對於毫米波的講解,主要在於探討毫米波雷達側方位原理以及其優勢所在。一、汽車毫米波雷達基本原理毫米波是指波長在1-10mm的電磁波,其帶寬大,解析度高,天線部件尺寸小,能適應惡劣環境。車用毫米波雷達,通常採用結構簡單成本較低,適合近距離探測的FMCW(調頻連續波)雷達體制。
  • 車載毫米波雷達的原理和應用技術
    來源|牛喀網摘要:本文分析了車載毫米雷達市場應用情況;介紹了其工作原理以及工作波形和工作調頻機制。車載雷達應用市場潛能巨大,有效的保障了行車安全和操控的舒適度。引言毫米波雷達作為汽車主動安全領域關鍵傳感器部件,可有效穿透霧、煙、灰塵,實現全天時、全天候工作負荷要求。
  • FMCW毫米波雷達原理一
    目前筆者接觸到的有24G毫米波雷達和77G毫米波雷達。24G毫米波雷達主要應用在交通領域的測距和車輛測速,在其他領域也有使用24G毫米波雷達。77G毫米波雷達主要應用在無人駕駛,汽車周圍的目標檢測等領域。在首次接觸雷達時,一頭霧水。搞不清一個chirp的時域圖和頻域圖的關係、中頻信號以及其他名詞的基本概念。在TI培訓官網上看到一些毫米波雷達原理的視頻才豁然開朗。
  • 毫米波FMCW雷達測距、測速原理、應用
    一部工作於94GHz的空間目標識別雷達的天線直徑為13.5m。當用回波管提供20kw的發射功率時,可以對14400km遠處的目標進行高解析度攝像。   汽車防撞雷達: 因其作用距離不需要很遠,故發射機的輸出功率不需要很高,但要求有很高的距離解析度(達到米級),同時要能測速,且雷達的體積要儘可能小。所以採用以固態振蕩器作為發射機的毫米波脈衝都卜勒雷達。
  • 毫米波雷達及其應用
    所謂的毫米波是無線電波中的一段,我們把波長為1~10毫米的電磁波稱毫米波,它位於微波與遠紅外波相交疊的波長範圍,因而兼有兩種波譜的特點。毫米波的理論和技術分別是微波向高頻的延伸和光波向低頻的發展。本文引用地址:http://www.eepw.com.cn/article/202005/412875.htm所謂的毫米波雷達,就是指工作頻段在毫米波頻段的雷達,測距原理跟一般雷達一樣,也就是把無線電波(雷達波)發出去,然後接收回波,根據收發之間的時間差測得目標的位置數據。毫米波雷達就是這個無線電波的頻率是毫米波頻段。
  • 毫米波雷達的原理和實現方式
    打開APP 毫米波雷達的原理和實現方式 周碧俊 發表於 2018-07-22 12:17:00 2017年有超過2億顆24GHz BSD(盲點偵測)傳感器出貨,如圖1全球24GHz BSD(盲點偵測)需求趨勢所示。
  • 毫米波雷達
    伴隨著這一趨勢,自動駕駛汽車應用而生,且國內很多自動駕駛研發企業快速成長。「自動駕駛」等相關熱詞也一直是行業關注的焦點。隨著世界範圍內76~77GHz毫米波雷達的廣泛應用,日本也逐漸轉入了79GHz毫米波雷達的開發中。各大國的車載雷達頻段主要集中在在23~24GHz、60~61GHz和76~77GHz(79GHz)3個頻段,而世界各國對毫米波車載雷達頻段使用的混亂情況使得汽車行業車載雷達的發展受到了限制。
  • 毫米波雷達系統方案
    ,具備主動安全技術的ADAS系統呈現快速發展的勢頭。在汽車主動安全領域,汽車微波/毫米波雷達傳感器因為能夠全天候工作,不受光線、霧霾、沙塵暴等惡劣天氣的影響,已成為業界公認的主流選擇,擁有巨大的市場需求,因而也是汽車電子廠商當前的主要研發方向。毫米波雷達同超聲波雷達相比,毫米波雷達具有體積小、質量輕和空間解析度高的特點。與紅外、雷射、攝像頭等光學傳感器相比,毫米波雷達穿透霧、煙、灰塵的能力強,具有全天候全天時的特點。
  • 毫米波雷達是汽車ADAS不可或缺的核心傳感器,能夠全天候全天時工作
    這種時候,毫米波雷達憑藉其可穿透塵霧、雨雪、不受惡劣天氣影響的絕對優勢,且唯一能夠「全天候全天時」工作的超強能力,成為了汽車ADAS不可或缺的核心傳感器之一! 下面,我們和毫米波雷達來一次「親密接觸」,了解一下它的概念和工作原理。 毫米波雷達——全天候全天時工作 毫米波雷達,顧名思義,就是工作在毫米波頻段的雷達。
  • 一文讀懂毫米波雷達測方位原理及優勢
    汽車毫米波雷達基本原理   毫米波是指波長在1-10mm的電磁波,其帶寬大,解析度高,天線部件尺寸小,能適應惡劣環境。   毫米波雷達測方位的原理   在汽車主動安全領域,汽車毫米波雷達傳感器是核心部件之一,其中77GHZ毫米波雷達是智能汽車上必不可少的關鍵部件,是能夠在全天候場景下快速感知0-200米範圍內周邊環境物體距離、速度、方位角等信息的傳感器件。那麼它是如何計算被監測目標的位置、速度和方向的呢?
  • 毫米波雷達結構_毫米波雷達結構原理圖詳解 - CSDN
    雷達傳感器發展趨勢如下圖所示, 雷達利用電磁波的傳輸和探測進行工作:電磁波遇到障礙物時會被反射.印刷電路板和處理: 這包括數位訊號處理(DSP)單元汽車領域的雷達應用在自動駕駛領域的毫米波雷達主要有3個頻段, 分別是24GHz, 77GHz和79GHz, 普遍分為長距雷達和短距雷達, 長距雷達可以測量遠達250m的物體, 但視野很小, 而短距雷達被設計為具有更大的視野, 但看不到遠處.
  • 毫米波雷達的應用場景是怎樣的
    其中,最為火熱的應用之一為毫米波雷達技術。本文中,將從兩大方面對毫米波雷達加以闡述:1.車載毫米波雷達頻段劃分以及發展趨勢解析,2.介紹毫米波雷達的幾個應用場景。如果你對毫米波,疑惑對毫米波雷達存在一定興趣,不妨繼續往下閱讀。 一、車載毫米波雷達頻段劃分 (一)頻段介紹 從頻段上來看,比較常見的車載領域的毫米波雷達頻段有兩類。
  • 從構造和原理到應用,毫米波雷達為何還未被雷射雷達取代?
    而現在雷達成為了車主擺脫油門的助手——自適應巡航的主傳感器,以及併線的保護神——盲點監測和併線輔助用傳感器,還偶爾扮演避免追尾事故的最後一道防線——自動緊急制動用傳感器。z7tednc二、構造和原理目前車載雷達的頻率主要分為24GHz頻段和77GHz頻段,其中77GHz頻段代表著未來的趨勢:這是國際電信聯盟專門劃分給車用雷達的頻段。