從時域、頻域和統計域分析噪聲

2020-11-24 EDN電子設計技術

每個電路都有一定的噪聲,這些噪聲會影響模擬和數字電路的性能。有些噪聲來自外部幹擾,有些噪聲則由熱效應等隨機因素引起。隨機產生的噪聲要比已知來源的噪聲更難以表徵,因為沒有哪次測量提供了關於上一次或下一次測量的任何信息。這種過程只能通過對許多事件的多次測量、並用下次某個具體事件的概率來描述。許多數字示波器提供的工具可以用來表徵噪聲。一旦了解了噪聲的特徵,就有辦法減輕噪聲。Ua7ednc

要用數字示波器分析諸如電氣噪聲等隨機信號,就需要能夠提供隨機過程多個視圖的工具。圖1是多維示波器工具的預覽圖。Ua7ednc


圖1:左上圖是帶寬受限的高斯噪聲的時域圖,左下圖是功率譜密度,是帶寬受限噪聲的頻域圖;右面的柱狀圖是帶寬受限噪聲的統計圖。這三個視圖都因採用了有助於對測量進行量化的測量參數而得到增強。Ua7ednc

Ua7ednc

顯示在圖1左上部分的曲線是帶寬受限的高斯噪聲的時域圖。我們在整篇文章中引用的都是這個信號。下面的曲線顯示的是頻域中的噪聲:信號的功率譜密度(PSD)顯示了每赫茲的噪聲功率與頻率的關係。右圖是帶寬受限噪聲的柱狀圖,通過近似隨機過程的概率密度函數(PDF)提供統計視圖。這些曲線的下方顯示了一系列的測量參數,用於量化通過數學計算得到的波形。下面我們將詳細了解每種測量技術,看看每種方法能夠呈現帶寬受限噪聲信號哪些內容。Ua7ednc

噪聲或抖動

噪聲和抖動是相互關聯的。噪聲是疊加到有用信號上的不想要的垂直信號分量;抖動是信號時序發生了不想要的變化。噪聲信號被施加到諸如邏輯門這樣的閾值比較器上時就變成了抖動。由垂直噪聲引起的幅度變化會使輸出早於或晚於閾值交越的理想時序。用於測量噪聲的工具和過程同樣可用於測量抖動。Ua7ednc

對於接到示波器輸入通道的信號可以直接進行噪聲測量,抖動測量則是基於時序測量,比如時間間隔誤差(TIE)、周期或佔空比。對輸入信號開展的這些時序測量都是一個周期一個周期進行的。使用稱為軌跡或時間軌跡的數學函數,可以將測量結果按時間繪製出來。這種軌跡函數就是隨後用於抖動測量的輸入信號。Ua7ednc

時域

測量參數可以應用於圖2中的噪聲波形,以深入了解這種噪聲信號的特性。圖中顯示的參數有平均值、標準偏差和峰峰值。顯示器下方顯示了讀取的參數值。Ua7ednc


圖2:帶寬受限噪聲信號的時域圖。參數值顯示了基本測量、平均值、標準偏差或交流均方根、峰峰值。Ua7ednc

Ua7ednc

參數標記在隨機波形上,圖形化顯示了測量結果。標準偏差也可以被稱為交流耦合的均方根(rms)值,因為它描述了波形的有效幅度,因此也許是最有用的。平均值是指信號的平均值,採集過程中出現的最大和最小幅度之差則用峰峰值表示。除了讀取指定採集過程的所選參數,示波器還可以計算和顯示多次採集後每種參數的累積統計結果,提供每種參數的均值、最大值、最小值和標準偏差。Ua7ednc

柱狀圖:統計域視圖

隨機過程最好是在統計域中用柱狀圖進行描述。圖3顯示了上述帶寬受限的噪聲信號的柱狀圖及源波形。這張柱狀圖將滿刻度電壓範圍分為5000份,並計算落在每一範圍內的採樣值數量。垂直軸是每一範圍內的樣本數量,正比於該值發生的概率,水平軸是幅度值,本例中是電壓值。Ua7ednc

帶寬受限噪聲信號的柱狀圖是經典的貝爾曲線,具有高斯或正常概率密度函數的特徵。如果知道波形的方差(標準偏差的平方)和均值,就可以完整地描述概率密度函數。另外要注意,這種分布圍繞均值呈對稱特性。Ua7ednc


圖3:帶寬受限噪聲信號的柱狀圖呈現出典型的高斯貝爾形狀的響應。柱狀圖參數讀取柱狀圖均值、標準偏差和範圍。Ua7ednc

Ua7ednc

測量參數也可以應用於柱狀圖。在這個例子中是柱狀圖均值(hmean)、標準偏差(hstdev)和範圍(hrange)。注意,這些讀數與前面測量時間波形得到的均值、標準偏差和峰峰值非常接近,兩者之間很小的差別是對柱狀圖樣本的「分割」造成的。Ua7ednc

高斯分布圍繞均值呈對稱特性,隨著幅度遠離均值,幅度值的概率會下降。雖然極端幅度(稱為尾巴)發生的概率很低,但仍然是可能發生的。極端幅度不會到零意味著高斯分布是沒有邊界的。只要有足夠多的樣本,很大幅度的樣本也是有可能出現的。圖4顯示了一些典型的概率密度函數。高斯分布是最上面那個圖形。Ua7ednc


圖4:包括高斯、瑞利、均勻和正弦在內的一組概率密度函數。Ua7ednc

Ua7ednc

從上往下數第二張圖是瑞利分布。這是一種不對稱的分布,是將高斯分布噪聲施加到峰值檢測器造成的。這種分布表明概率密度函數不需要是對稱的。Ua7ednc

從上至下數第三張圖是一種均勻分布。這種分布出現在時序測量中,比如觸發事件和示波器採樣第一個樣本之間的時間。在均勻分布中,所有樣值都具有相同的概率。這種分布是有邊界的。Ua7ednc

最底下那張圖顯示的是同樣具有邊界約束的正弦分布。這種分布呈馬鞍形狀,最大概率發生在幅度極值點(最大和最小值點)。Ua7ednc

在許多應用中,兩個或多個隨機過程可能發生交互。當這種情況發生時,過程的概率密度會進行數學卷積運算。一個常見的例子是結合了隨機和確定性抖動分量的時序抖動。圖5顯示了結合在一起的高斯和正弦分量,源分布位於上面兩張圖,從上往下數的第三張分布圖是兩個源卷積的結果。許多先進的示波器提供可選的抖動或噪聲分析包,這些分析包可以將這些組合式分布分開,單獨測量分量。Ua7ednc


圖5:當高斯和正弦分布組合在一起時形成的概率密度函數是兩個源概率密度函數的卷積。Ua7ednc

Ua7ednc

頻域分析

單位頻率上的功率(即功率譜密度PSD)是最常見的頻域噪聲分析工具。圖6給出了一個例子,上部是帶寬受限高斯噪聲的時域圖,下部是帶寬受限噪聲的功率譜密度。Ua7ednc


圖6:帶寬受限的高斯噪聲(上部)及其功率譜密度(下部)。功率譜密度曲線顯示了每單位頻率的功率與頻率的關係。功率譜密度的單位是V2/Hz,曲線下方的面積就是信號的均方值或方差。Ua7ednc

Ua7ednc

本例中功率譜密度的測量單位是V2/Hz。這條曲線是用示波器的快速傅立葉變換(FFT)計算出來的,選用的是輸出類型幅度平方而不是默認的分貝(dBm)刻度。除了輸出類型,我們還選擇了矩形加權和最小素因數FFT。這種FFT可以報告解析度帶寬Δf,在本例中是100kHz,以及加權函數的有效噪聲帶寬(ENBW),針對矩形加權的值為1.000。Ua7ednc

為了計算功率譜密度,平均後的FFT輸出必須被歸一化為有效FFT帶寬。此外,這個示波器的FFT輸出經校準可讀取峰值而不是均方根值。為了轉換回均方根值,FFT幅度值必須乘上0.707,幅度平方值必須乘上0.5。必須使用Rescale數學函數將FFT值除以FFT的有效帶寬才能將該值歸一化為單位帶寬(1Hz)。Rescale函數可以通過一個乘數因子並加減偏移量重新調整數值。在我們這個例子中,乘數是0.5/100E3 = 5E-6。乘數因子0.5在前面已經討論過。另外一個因子是有效FFT帶寬的倒數,是解析度帶寬乘以等效噪聲帶寬(ENBW)。如果選擇了矩形以外的加權函數,ENBW將是大於1的值。Rescale函數還能改變單位,在本例中單位被設為V2/Hz。你可能已經注意到,再構造數學函數也已經用於將浮點FFT輸出的映射優化進參數測量中使用的整數數學空間。Ua7ednc

參數P2測量時域波形的標準偏差參數。P6使用參數數學公式實現標準偏差的平方,得到噪聲信號的方差。參數P5代表功率譜密度曲線下方的面積,這個面積也是噪聲信號的方差,只不過是從功率譜密度計算出來的。兩種方法計算出來的方差值基本上是相等的,相差不到0.1%。Ua7ednc

在頻域中分析隨機過程可以幫助你細分不同頻率產生的噪聲。本例中的面積測量可以覆蓋整個FFT範圍。你也可以使用測量選通門將測量限制在指定頻帶內,以判斷特定頻譜區域的噪聲情況。在帶寬等於FFT有效噪聲帶寬的情況下,示波器的光標可以讀取特定頻率處的功率譜密度。Ua7ednc

派生參數

峰值因數,即波形峰值與均方根值之比,可以幫助你確定處理信號峰值變化所需的動態範圍。雖然我們使用的示波器沒有雙極性「峰值」參數,但我們藉助通道1中信號的絕對值可以很容易地創建一個。這樣可以將負值「翻轉」進波形的正值區域,進而讓你使用最大值參數讀取每次採集數據的最大正峰或負峰值。注意,這種方法是因為信號有零均值才起作用的。然後我們就可以使用參數數學公式計算峰值與均方根值之比的峰值因數。圖7顯示了這種測量。Ua7ednc


圖7:測量峰值與均方根值之比的信號峰值因數。所測信號的絕對值使得所有峰值呈單極性,因此最大值參數返回的就是每次採集數據的最大峰值。參數數學公式可計算出最大值與標準偏差(均方根)值之比值,即峰值因數。Ua7ednc

Ua7ednc

最上邊的波形是帶寬受限的噪聲信號。參數P2是噪聲波形的標準偏差(交流耦合的均方根值)。下面一個波形顯示了噪聲波形的絕對值,這個波形是單極性的。源波形中的最高正負峰值已成為最高絕對峰值。使用最大值參數得到這個參數。Ua7ednc

參數P5是絕對波形曲線的最大值。參數P6使用參數數學公式計算每次採集數據的峰值因數,即P5(max)與P2(rms)的比值。P6參數統計顯示了當前值、均值、最小最大標準偏差以及峰值因數測量值總數。在本例所示超過15000次採集中,峰值因數從3.68變到6.53,平均值為4.38。Ua7ednc

從上往下第三張圖是峰值因數的趨勢曲線,按測量順序顯示了每一次測量的峰值因數。趨勢圖下方是峰值因數的柱狀圖。從圖中可以看出,峰值因數測量結果大多在均值附近,僅在均值的最右邊有少量的高值測量結果。Ua7ednc

總結

你可以使用現代數字示波器中的時域、頻域和統計域工具量化諸如噪聲和抖動等隨機過程,並通過相關的測量參數進行增強。包括均值、標準偏差和範圍在內的統計參數可以幫助你了解被測的過程。參數數學公式可以推導出派生參數,比如方差和峰值因數。Ua7ednc

《電子技術設計》2017年7月刊版權所有,謝絕轉載。Ua7ednc

Ua7ednc

相關焦點

  • 時域分析和頻域分析
    時域分析時,給定激勵的頻率,由驅動器和負載模型定義信號的變化沿和輸入輸出阻抗特性,仿真出信號通過PCB上信號傳輸線經過反射後的波形。然而,實際情況往往和仿真不一樣:首先,實際信號的頻率並不一定,變化沿也和模型描述有差異,造成信號頻譜差異,這樣他們通過傳輸線後的頻譜特性必然會不同;其次,時域仿真時的信號是經過負載阻抗和驅動器內阻之間多次反射後的波形,實際的驅動器和負載的阻抗和模型定義的也不同,也會造成波形變化。綜上所述,時域仿真存在太多偶然因素,有局限性。
  • 時域和頻域的關係
    我們的經歷都是在時域中發展和驗證的,已經習慣於事件按時間的先後順序地發生。而評估數字產品的性能時,通常在時域中進行分析,因為產品的性能最終就是在時域中測量的。如下圖所示的時鐘波形。由上圖可知,時鐘波形的兩個重要參數是時鐘周期和上升時間。圖中標明了1GHz時鐘信號的時鐘周期和10-90上升時間。下降時間一般要比上升時間短一些,有時會出現更多的噪聲。
  • 時域與頻域的含義以及其分析舉例和優點
    在研究時域的信號時,常會用示波器將信號轉換為其時域的波形。 時域是真實世界,是惟一實際存在的域。因為我們的經歷都是在時域中發展和驗證的,已經習慣於事件按時間的先後順序地發生。而評估數字產品的性能時,通常在時域中進行分析,因為產品的性能最終就是在時域中測量的。如下圖2.1所示的時鐘波形。
  • 時域和頻域之間的射頻信號轉換
    然而,在這兩種情況下,通過首先在互補域中運行仿真然後進行 FFT 以在優選域中生成結果,可以提高寬頻率和時間範圍內的計算性能。例如,你可以:對時域帶通脈衝響應執行頻率掃描,然後執行時域到頻域 FFT10 GHz 下同軸低通濾波器中電場模的對數表面圖和時間平均功率流的箭頭圖。以較小頻率步長執行寬帶頻率掃描可能是一項耗時且麻煩的任務。
  • 電磁兼容設計的時域和頻域分析方法
    在開始學習電磁兼容設計之前,我們要學習一個有用的知識,這就是「頻率域」。大部分電子設計師對於時間域非常熟悉,在分析問題的時候,用示波器觀察信號的波形。波形表示的是一個信號隨著時間變化的情況,因此叫做時間域分析。但是,在處理電磁兼容問題時,我們經常更關心騷擾的頻率。
  • labVIEW 時域—頻域分析
    頻域(頻率域)——自變量是頻率,即橫軸是頻率,縱軸是該頻率信號的幅度,也就是通常說的頻譜圖。頻譜圖描述了信號的頻率結構及頻率與該頻率信號幅度的關係。
  • labVIEW時域—頻域分析
    頻域(頻率域)——自變量是頻率,即橫軸是頻率,縱軸是該頻率信號的幅度,也就是通常說的頻譜圖。頻譜圖描述了信號的頻率結構及頻率與該頻率信號幅度的關係。
  • 一張動圖,讓你明白時域和頻域的關係
    看明白了這張圖,就可以了解為什麼既要做時域分析也要做頻域分析了吧。 簡單總結下,時域和頻域的關係如下: 時域是信號在時間軸隨時間變化的總體概括。
  • 巧用是德科技示波器頻域方法分析電源噪聲
    電源噪聲是電磁幹擾的一種,其傳導噪聲的頻譜大致為10kHz~30MHz,最高可達150MHz。電源噪聲,特別是瞬態噪聲幹擾,其上升速度快、持續時間短、電壓振幅度高、隨機性強,對微機和數字電路易產生嚴重幹擾。
  • 教你用示波器頻域方法分析電源噪聲
    電源噪聲,特別是瞬態噪聲幹擾,其上升速度快、持續時間短、電壓振幅度高、隨機性強,對微機和數字電路易產生嚴重幹擾。   示波器頻域分析在電源調試的應用   本文談到這麼多年來最受關注的電源噪聲測量問題,有最實用的經驗總結,有實測案例佐證,有仿真分析相結合。
  • 信號分析基礎 | 信號表達方式——時域和頻域
    在分析信號解決問題時,模態域、時域和頻域是可以互換的,可以將信號進行域之間的轉化,這其中的好處是:在時域視角難以解決的問題,轉換成頻域或模態域後通常可以變得非常清晰。之前我們了解了模態域(信號分析基礎 | 信號表達方式——模態域),今天來聊一聊時域和頻域。在時域中觀察信號是一種最傳統的方法。時域是指對系統中某個參數隨時間變化的記錄。
  • 信號表達方式時域和頻域
    在分析信號解決問題時,模態域、時域和頻域是可以互換的,可以將信號進行域之間的轉化,這其中的好處是:在時域視角難以解決的問題,轉換成頻域或模態域後通常可以變得非常清晰
  • 時域頻域,你的樣子---第二章複習
    時域頻域,你的樣子          ----第二章複習第一章,我們從最熟悉的時間域的角度看這個世界
  • 時域與頻域都是啥?這裡有詳細解答
    如信號強度隨時間的變化規律(時域特性),信號是由哪些單一頻率的信號合成的(頻域特性)。  時域time domain  在分析研究問題時,以時間作基本變量的範圍。  時域是描述數學函數或物理信號對時間的關係。例如一個信號的時域波形可以表達信號隨著時間的變化。
  • 通俗易懂的無源濾波器的時域和頻域特性
    本文介紹了濾波的概念,並詳細說明了電阻 - 電容(RC)低通濾波器的用途和特性。 1 時域和頻域 當我們在示波器上查看電信號時,會看到一條線,表示電壓隨時間的變 化。在任何特定時刻,信號只有一個電壓值。我們在示波器上看到的是信號的時域表示。 典型的示波器很直觀,但它也有一定的限制性,因為它不直接顯示信號的頻率內容。
  • 示波器FFT功能之電源噪聲分析
    一提到電源噪聲,相信就會引起很多電子工程師的共鳴。我們平時所說的電源噪聲到底是什麼呢?它等同於電源紋波嗎?事實上,電源噪聲不同於電源紋波,它是出現在輸出端子間的紋波以外的一種高頻成分。
  • 從時域到頻域-換個角度看世界
    對於大多數電子工程師來說,時域的信號是非常直觀和容易理解的,因為時域是一個真實世界,是實際存在的域。我們所有的經歷都是在時域中發展和驗證,而且大家都已經習慣了事件是按照時間先後順序發生的,並得到記錄保存。
  • 頻率響應法-- 頻域性能指標和時域性能指標的關
    頻率響應法是通過系統的開環頻率特性和閉環頻率特性的一些特徵量間接地表徵系統瞬態響應的性能,因而這些特徵量又被稱為頻域性能指標。常用的頻域性能指標包括:開環頻率特中的相位裕量、增益裕量;閉環頻率特中的諧振峰值、頻帶寬度和諧振頻率等。在時域分析中,控制系統包括靜態性能指標和動態性能指標。
  • 時域、頻域解析度「雙高」的高精度探測手段
    因此,尋求一種同時結合時域和頻域解析度的探測手段顯得至關重要。該方案克服了單個超短脈衝頻域解析度低的弊端,兼具高的時間分辨本領和能量分辨本領。圖1為該幹涉儀的原理圖。利用該項技術的超高時間解析度,作者成功實現了任意偏振態光場時域波形的精密測量。
  • 全光阿秒時域幹涉技術——時域、頻域解析度「雙高」的高精度探測手段 | NSR
    然而由於傅立葉變換的性質,超高時間分辨尺度往往意味著更低的頻率解析度,為從頻域中提取原子、分子的結構信息帶來困難。因此,尋求一種同時結合時域和頻域解析度的探測手段顯得至關重要。最近,華中科技大學超快光學團隊在《國家科學評論》(National Science Review,NSR) 發表研究論文,提出了一種全光阿秒時域幹涉方案。