通俗易懂的無源濾波器的時域和頻域特性

2021-01-07 電子發燒友

近期看了一些無源濾波器的資料,其中Robert Keim寫的文章通俗易懂,讓我們一起來看看處理EMC問題中最常用的手段-RC濾波。

本文介紹了濾波的概念,並詳細說明了電阻 - 電容(RC)低通濾波器的用途和特性。

1

時域和頻域

當我們在示波器上查看電信號時,會看到一條線,表示電壓隨時間的變 化。在任何特定時刻,信號只有一個電壓值。我們在示波器上看到的是信號的時域表示。

典型的示波器很直觀,但它也有一定的限制性,因為它不直接顯示信號的頻率內容。與時域表示相反,頻域表示(也稱為頻譜)通過識別同時存在的各種頻率分量來傳達關於信號的信息。

正弦波(頂部)和方波(底部)的時域表示

正弦波(頂部)和方波(底部)的頻域表示

2

什麼是濾波器

濾波器是一個電路,其去除或「過濾掉」特定範圍的頻率分量。換句話說,它將信號的頻譜分離為將要通過的頻率分量和將被阻塞的頻率分量。

讓我們假設我們有一個由完美的5 kHz正弦波組成的音頻信號。我們知道時域中的正弦波是什麼樣的,在頻域中我們只能看到5 kHz的頻率「尖峰」。現在讓我們假設我們激活一個500 kHz振蕩器,將高頻噪聲引入音頻信號。在示波器上看到的信號仍然只是一個電壓序列,每個時刻有一個值,但信號看起來會有所不同,因為它的時域變化現在必須反映5 kHz正弦波和高頻噪音波動。然而,在頻域中,正弦波和噪聲是在該一個信號中同時存在的單獨的頻率分量。正弦波和噪聲佔據了信號頻域表示的不同部分(如下圖所示),這意味著我們可以通過將信號引導通過低頻並阻擋高頻的電路來濾除噪聲。

3

濾波器的類型

如果濾波器通過低頻並阻止高頻,則稱為低通濾波器。如果它阻擋低頻並通過高頻,它就是一個高通濾波器。還有帶通濾波器,其僅通過相對窄的頻率範圍,以及帶阻濾波器,其僅阻擋相對窄的頻率範圍。

還可以根據用於實現電路的組件類型對濾波器進行分類。無源濾波器使用電阻、電容、電感;這些組件不具備提供放大的能力,因此無源濾波器只能維持或減小輸入信號的幅度。另一方面,有源濾波器既可以濾波信號又可以應用增益,因為它包括有源元件,如電晶體或運算放大器。

基於流行的Sallen-Key拓撲結構的有源低通濾波器

4

RC低通濾波器

為了創建無源低通濾波器,我們需要將電阻元件與電抗元件組合在一起。換句話說,我們需要一個由電阻器和電容器或電感器組成的電路。從理論上講,電阻 - 電感(RL)低通拓撲在濾波能力方面與電阻 - 電容(RC)低通拓撲相當。但實際上,電阻 - 電容版本更為常見,因此本文的其餘部分將重點介紹RC低通濾波器。

RC低通濾波器

如圖所示,通過將一個電阻與信號路徑串聯,並將一個電容與負載並聯, 可以產生RC低通響應。在圖中,負載是單個組件,但在實際電路中,它可能更複雜,例如模擬到數字轉換器,放大器或示波器的輸入級,用於測量濾波器的響應。

如果我們認識到電阻器和電容器形成與頻率相關的分壓器,我們可以直觀地分析RC低通拓撲的濾波動作。

重新繪製RC低通濾波器,使其看起來像分壓器

當輸入信號的頻率低時,電容器的阻抗相對於電阻器的阻抗高; 因此,大部分輸入電壓在電容器上(和負載兩端,與電容器並聯)下降。當輸入頻率較高時,電容器的阻抗相對於電阻器的阻抗較低,這意味著電阻器上的電壓降低,並且較少的電壓傳輸到負載。因此,低頻通過並且高頻被阻擋。

RC低通功能的這種定性解釋是重要的第一步,但是當我們需要實際設計電路時它並不是很有用,因為術語「高頻」和「低頻」非常模糊。工程師需要創建通過並阻止特定頻率的電路。例如,在上述音頻系統中,我們希望保留5kHz信號並抑制500kHz信號。這意味著我們需要一個過濾器,從5 kHz到500 kHz之間的傳遞過渡到阻塞。

5

截止頻率

濾波器不會引起顯著衰減的頻率範圍稱為通帶,濾波器確實導致顯著衰減的頻率範圍稱為阻帶。模擬濾波器,例如RC低通濾波器,總是從通帶逐漸過渡到阻帶。這意味著無法識別濾波器停止傳遞信號並開始阻塞信號的一個頻率。然而,工程師需要一種方便,簡潔地總結濾波器頻率響應的方法,這就是截止頻率概念發揮作用的地方。

當我們查看RC濾波器的頻率響應圖時,會注意到術語「截止頻率」不是很準確。信號光譜被「切割」成兩半的圖像,其中一個被保留而其中一個被丟棄, 不適用,因為隨著頻率從截止點下方移動到截止值以上,衰減逐漸增加。

RC低通濾波器的截止頻率實際上是輸入信號幅度降低3dB的頻率(選擇該值是因為幅度降低3dB對應於功率降低50%)。因此,截止頻率也稱為-3 dB頻率,實際上該名稱更準確且信息量更大。術語帶寬是指濾波器通帶的寬度,在低通濾波器的情況下,帶寬等於-3 dB頻率(如下圖所示)。

該圖表示RC低通濾波器的頻率響應的一般特性。帶寬等於-3 dB頻率

如上所述,RC濾波器的低通行為是由電阻器的頻率無關阻抗與電容器的頻率相關阻抗之間的相互作用引起的。為了確定濾波器頻率響應的細節,我們需要在數學上分析電阻(R)和電容(C)之間的關係,我們還可以改變這些值,以設計滿足精確規格的濾波器。RC低通濾波器的截止頻率(f C) 計算如下:

我們來看一個簡單的設計實例。電容值比電阻值更具限制性,因此我們將從常見的電容值(例如10 nF)開始,然後我們將使用該公式來確定所需的電阻值。目標是設計一個濾波器,它將保留5 kHz音頻波形並抑制500 kHz 噪聲波形。我們將嘗試100 kHz的截止頻率,稍後在文章中我們將更仔細地分析此濾波器對兩個頻率分量的影響。

因此,160Ω電阻與10 nF電容相結合,將為我們提供一個非常接近所需頻率響應的濾波器。

6

計算過濾器響應

我們可以通過使用典型分壓器計算的頻率相關版本來計算低通濾波器的理論行為。電阻分壓器的輸出表示如下:

RC濾波器使用等效結構,但是我們有一個電容器代替R 2。首先,我們用電容器的電抗(X C)代替R 2(在分子中)。接下來,我們需要計算總阻抗的大小並將其放在分母中。因此,我們有:

電容器的電抗表示與電流的相反量,但與電阻不同,相反量取決於通過電容器的信號頻率。因此,我們必須計算特定頻率的電抗,我們用於此的等式如下:

在上面的設計實例中,R≈160Ω且C = 10nF。我們假設V IN的幅度是1 V, 這樣我們就可以簡單地從計算中去掉V IN。首先讓我們以正弦波頻率計算VOUT的幅度:

正弦波的幅度基本不變。這很好,因為我們的目的是在抑制噪音的同時保持正弦波。這個結果並不令人驚訝,因為我們選擇的截止頻率(100 kHz) 遠高於正弦波頻率(5 kHz)。

現在讓我們看看濾波器如何成功衰減噪聲分量。

噪聲幅度僅為其原始值的約20%。

7

可視化過濾器響應

評估濾波器對信號影響的最方便方法是檢查濾波器頻率響應的圖。這些圖形通常稱為波德圖,在垂直軸上具有幅度(以分貝為單位),在水平軸上具有頻率; 水平軸通常具有指數標度,使得1Hz和10Hz之間的物理距離與10Hz和100Hz之間,100Hz和1kHz之間的物理距離相同。這種表示方法使我們能夠快速準確地評估濾波器在很大頻率範圍內的作用。

頻率響應圖的一個例子

曲線上的每個點表示如果輸入信號的幅度為1 V且頻率等於水平軸上的相應值,則輸出信號將具有的幅度。例如,當輸入頻率為1 MHz時,輸出幅度(假設輸入幅度為1 V)將為0.1 V(因為-20 dB對應於十倍減少因子)。

通帶中的曲線幾乎完全平坦,然後隨著輸入頻率接近截止頻率,它開始下降得更快。最終,衰減的變化率穩定在20 dB / decade。即,輸入頻率每增加十倍,輸出信號的幅度降低20 dB。

8

評估低通濾波器性能

如果我們仔細繪製我們在本文前面設計的濾波器的頻率響應,我們將看到5 kHz時的幅度響應基本上是0 dB(即幾乎為零衰減),500 kHz時的幅度響應約為-14 dB(對應於0.2的增益)。這些值與我們在上一節中執行的計算結果一致。

由於RC濾波器總是從通帶到阻帶逐漸過渡,並且因為衰減永遠不會達到無窮大,我們無法設計出「完美」的濾波器 - 即對正弦波完全沒有影響並完全消除噪聲的濾波器。相反,我們總是需要權衡。如果我們將截止頻率移近5 kHz, 我們將有更多的噪聲衰減,但我們想要發送到揚聲器的正弦波衰減更多。如果我們將截止頻率移近500 kHz,我們在正弦波頻率下的衰減會減少,但噪聲頻率下的衰減也會減少。

9

低通濾波器相移

到目前為止,我們已經討論了濾波器修改信號中各種頻率分量幅度的方式。然而,除了幅度效應之外,電抗性電路元件總是引入相移。

相位的概念是指周期內特定時刻的周期信號的值。因此,當我們說電路引起相移時,我們的意思是它會在輸入信號和輸出信號之間產生不對準:輸入和輸出信號不再在同一時刻開始和結束它們的周期。相移值(例如45°或90°)表示已創建多少未對準。

電路中的每個電抗元件都會引入90°的相移,但這種相移不會同時發生。輸出信號的相位與輸出信號的幅度一樣,隨著輸入頻率的增加而逐漸變化。在RC低通濾波器中,我們有一個電抗元件(電容器),因此電路最終會引入90°的相移。

與幅度響應一樣,通過檢查水平軸表示指數頻率的曲線圖,可以最容易地評估相位響應。下面描述了一般情況,然後我們可以通過檢查繪圖來填寫詳細信息。

相移最初為0°。

它逐漸增加,直到它在截止頻率達到45°; 在這部分響應期間,變化率正在增加。

在截止頻率之後,相移繼續增加,但變化率正在降低。

隨著相移漸近接近90°,變化率變得非常小。

實線是幅度響應,虛線是相位響應。截止頻率為100 kHz。注意,截止頻率下的相移為45°

10

二階低通濾波器

到目前為止,我們假設RC低通濾波器由一個電阻器和一個電容器組成。此配置是一階過濾器。

無源濾波器的「次序」由電路中存在的電抗元件(即電容器或電感器)的數量決定。高階濾波器具有更多的無源器件,這導致更多的相移和更陡的衰減。通過向濾波器添加一個電抗元件 ,例如,從一階到二階或二階到三階,最大斜率就會增加20 dB /十倍。更陡峭的斜率轉換為從低衰減到高衰減的更快速轉換,所以當一階濾波器不具有將期望頻率分量與噪聲分量分離的寬頻帶時,用多階濾波器可以實現目的。

11

總結

總結如下:

所有電信號都包含所需頻率分量和不需要的頻率分量的混合。不期望的頻率分量通常由噪聲和幹擾引起,並且在某些情況下它們將對系統的性能產生負面影響。

濾波器是以不同方式對信號頻譜的不同部分作出反應的電路。低通濾波器旨在傳遞低頻分量並阻止高頻分量。

低通濾波器的截止頻率表示濾波器從低衰減轉變為顯著衰減的頻率區域。

RC低通濾波器的輸出電壓可以通過將電路視為由(頻率無關)電阻和(頻率相關)電抗組成的分壓器來計算。

幅度(以dB為單位,在垂直軸上)與頻率(以赫茲為單位,在水平軸上)的曲線圖是檢查濾波器理論行為的方便有效的方法。我們還可以使用相位與指數頻率的關係圖來確定將應用於輸入信號的相移量。

二階濾波器提供更陡峭的衰減; 當信號不能在所需頻率分量和不需要的頻率分量之間提供寬帶分離時,這種二階響應是有用的。

打開APP閱讀更多精彩內容

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容圖片侵權或者其他問題,請聯繫本站作侵刪。 侵權投訴

相關焦點

  • 時域分析和頻域分析
    時域分析時,給定激勵的頻率,由驅動器和負載模型定義信號的變化沿和輸入輸出阻抗特性,仿真出信號通過PCB上信號傳輸線經過反射後的波形。然而,實際情況往往和仿真不一樣:首先,實際信號的頻率並不一定,變化沿也和模型描述有差異,造成信號頻譜差異,這樣他們通過傳輸線後的頻譜特性必然會不同;其次,時域仿真時的信號是經過負載阻抗和驅動器內阻之間多次反射後的波形,實際的驅動器和負載的阻抗和模型定義的也不同,也會造成波形變化。綜上所述,時域仿真存在太多偶然因素,有局限性。
  • 時域測量的高斯響應低通濾波器
    實際上,理想的高斯特性很難實現,對於接近高斯特性的電學特性來說,時間/頻率關係可用以下近似表達:   式(2)的時域和頻域響應特性圖  高斯響應的階躍脈衝激勵信號  測量儀器供應商都力求產品具有高斯響應的頻率特性,特別是波形顯示儀器和頻譜分析儀等實驗室和生產線常用的時域/頻域儀器,最低限度應該具有近似高斯響應特性。可以設想,如果測量儀器的高頻段幅值起伏而不是平滑下降,結果是測量結果失真,表現為波形的過渡時間出現過衝和振鈴,頻譜內出現雜散諧波。
  • 時域和頻域之間的射頻信號轉換
    然而,在這兩種情況下,通過首先在互補域中運行仿真然後進行 FFT 以在優選域中生成結果,可以提高寬頻率和時間範圍內的計算性能。例如,你可以:對時域帶通脈衝響應執行頻率掃描,然後執行時域到頻域 FFT10 GHz 下同軸低通濾波器中電場模的對數表面圖和時間平均功率流的箭頭圖。以較小頻率步長執行寬帶頻率掃描可能是一項耗時且麻煩的任務。
  • 時域與頻域的含義以及其分析舉例和優點
    如信號強度隨時間的變化規律(時域特性),信號是由哪些單一頻率的信號合成的(頻域特性) 時域time domain在分析研究問題時,以時間作基本變量的範圍。時域是描述數學函數或物理信號對時間的關係。例如一個信號的時域波形可以表達信號隨著時間的變化。若考慮離散時間,時域中的函數或信號,在各個離散時間點的數值均為已知。若考慮連續時間,則函數或信號在任意時間的數值均為已知。
  • 時域和頻域的關係
    我們的經歷都是在時域中發展和驗證的,已經習慣於事件按時間的先後順序地發生。而評估數字產品的性能時,通常在時域中進行分析,因為產品的性能最終就是在時域中測量的。如下圖所示的時鐘波形。由上圖可知,時鐘波形的兩個重要參數是時鐘周期和上升時間。圖中標明了1GHz時鐘信號的時鐘周期和10-90上升時間。下降時間一般要比上升時間短一些,有時會出現更多的噪聲。
  • 有源和無源濾波器的區別_有源無源濾波器優缺點
    任何一個電子系統都具有自己的頻帶寬度(對信號最高頻率的限制),頻率特性反映出了電子系統的基本特點。而濾波器,則是根據電路參數對電路頻帶寬度的影響而設計出來的工程應用電路。大家都知道濾波器種類很多,而有源和無源濾波器的區別我們最簡單的分別辦法是看看是否需要電源,在作用上最大的區別在於有源濾波器可以有增益,無源濾波器無增益是衰減的。
  • 時域反射和傳輸的S參數測量
    計算技術和數字處理促進了傅立葉變換的應用,快速傅立葉變換(FFT)和反向傅立葉變換(IFFT)使數字取樣示波器的時域—頻域變換,能夠在1ms級內完成1024個樣品的複雜計算。分立的時域—頻域關係如圖2所示,圖中左邊是一個階躍脈衝,由極短脈衝△t取樣,時間窗口等於N△t,圖中右方是FTT運算後的頻普分量,相應的頻率增量等於△f=1/N△t,N是取樣點數。
  • 基於時域反射和傳輸的S參數測量方法
    引言  在頻域、時域、阻抗域三種電學基本特性測試測量儀器中,以阻抗域測試測量儀器所用電路結構最複雜、測試操作最費時間、成套價格最高。在十年前一些測試測量專家試圖從時域—頻域特性測量入手,通過快速傅立葉函數變換將幅度—時間特性變成分立的幅度—頻率特性,在此基礎上推導出S參數。整個測試過程和測量條件與直接測量S參數相同,只是激勵源從掃頻發生器改為階躍脈衝發生器,從時域反射(TDR)和時域傳輸(TRT)參數導出S參數。
  • 信號表達方式時域和頻域
    在分析信號解決問題時,模態域、時域和頻域是可以互換的,可以將信號進行域之間的轉化,這其中的好處是:在時域視角難以解決的問題,轉換成頻域或模態域後通常可以變得非常清晰
  • 時域與頻域都是啥?這裡有詳細解答
    頻域frequency domain 是描述信號在頻率方面特性時用到的一種坐標系。對任何一個事物的描述都需要從多個方面進行,每一方面的描述僅為我們認識這個事物提供部分的信息。例如,眼前有一輛汽車,我可以這樣描述它方面1:顏色,長度,高度。方面2:排量,品牌,價格。而對於一個信號來說,它也有很多方面的特性。
  • 頻率響應法-- 頻域性能指標和時域性能指標的關
    頻率響應法是通過系統的開環頻率特性和閉環頻率特性的一些特徵量間接地表徵系統瞬態響應的性能,因而這些特徵量又被稱為頻域性能指標。常用的頻域性能指標包括:開環頻率特中的相位裕量、增益裕量;閉環頻率特中的諧振峰值、頻帶寬度和諧振頻率等。在時域分析中,控制系統包括靜態性能指標和動態性能指標。
  • 什麼是低通濾波器?無源RC濾波器基礎介紹
    Robert Keim本文介紹了濾波的概念並詳細說明了電阻電容(RC)低通濾波器的用途和特性。時域和頻域當你看到示波器上的電信號時,你會看到一條線,它代表電壓隨時間的變化。在任何特定時刻,信號只有一個電壓值。
  • 時域頻域,你的樣子---第二章複習
    第二章,我們就要從變換域(頻域、Z域、S域,統稱變換域)的角度看這個世界了。如果選擇頻域,我們就考察事物的某些量隨著頻率變化的關係。為毛要扭轉時域的思維定式?為毛要從變換域去考慮問題?舉個慄子,來看看一個事物在時域和頻域不同的樣子。
  • 一張動圖,讓你明白時域和頻域的關係
    看明白了這張圖,就可以了解為什麼既要做時域分析也要做頻域分析了吧。 簡單總結下,時域和頻域的關係如下: 時域是信號在時間軸隨時間變化的總體概括。
  • 了解無源RC濾波器,看完這篇你就懂了(一)
    本文將介紹濾波的概念,並詳細說明電阻—電容(RC)低通濾波器的用途和特性。您在示波器上看到的是信號的時域表示。典型的示波器跟蹤顯示非常直觀,但也有一定的限制性,因為它不直接顯示信號的頻率內容。而與時域表示相反就是頻域,其中一個時刻僅對應於一個電壓值,頻域表示(也稱為頻譜)通過識別同時存在的各種頻率分量來傳達關於信號的信息。
  • 從時域、頻域和統計域分析噪聲
    Ua7edncUa7ednc顯示在圖1左上部分的曲線是帶寬受限的高斯噪聲的時域圖。我們在整篇文章中引用的都是這個信號。下面的曲線顯示的是頻域中的噪聲:信號的功率譜密度(PSD)顯示了每赫茲的噪聲功率與頻率的關係。右圖是帶寬受限噪聲的柱狀圖,通過近似隨機過程的概率密度函數(PDF)提供統計視圖。
  • 信號分析基礎 | 信號表達方式——時域和頻域
    在分析信號解決問題時,模態域、時域和頻域是可以互換的,可以將信號進行域之間的轉化,這其中的好處是:在時域視角難以解決的問題,轉換成頻域或模態域後通常可以變得非常清晰。之前我們了解了模態域(信號分析基礎 | 信號表達方式——模態域),今天來聊一聊時域和頻域。在時域中觀察信號是一種最傳統的方法。時域是指對系統中某個參數隨時間變化的記錄。
  • labVIEW 時域—頻域分析
    頻域(頻率域)——自變量是頻率,即橫軸是頻率,縱軸是該頻率信號的幅度,也就是通常說的頻譜圖。頻譜圖描述了信號的頻率結構及頻率與該頻率信號幅度的關係。
  • labVIEW時域—頻域分析
    頻域(頻率域)——自變量是頻率,即橫軸是頻率,縱軸是該頻率信號的幅度,也就是通常說的頻譜圖。頻譜圖描述了信號的頻率結構及頻率與該頻率信號幅度的關係。
  • 從時域到頻域-換個角度看世界
    對於大多數電子工程師來說,時域的信號是非常直觀和容易理解的,因為時域是一個真實世界,是實際存在的域。我們所有的經歷都是在時域中發展和驗證,而且大家都已經習慣了事件是按照時間先後順序發生的,並得到記錄保存。