2016年7月7日訊 /生物谷BIOON/ --本文亮點:
抑制miR-29a家族表達能夠提高體細胞重編程效率
DNA去甲基化是抑制miR-29a表達之後誘導產生的主要變化
CpG島周圍的甲基化受到miR-29a家族的高度調控
抑制miR-29a家族表達後獲得的誘導多能幹細胞在表觀遺傳水平上與胚胎幹細胞非常接近
近日,來自美國耶魯幹細胞中心的研究人員在國際學術期刊Stem Cell Reports上發表了一項最新研究進展,他們發現一個microRNA家族在體細胞重編程過程中對DNA甲基化水平起到了重要調節作用,抑制該microRNA能夠使誘導多能幹細胞的DNA甲基化水平更加接近胚胎幹細胞。該研究對優化誘導多能幹細胞的重編程條件,獲得更適於臨床應用的iPSC具有重要意義。
過表達Yamanaka四因子(OCT4,SOX2,KLF4以及MYC)誘導體細胞重編程獲得多能幹細胞的過程還會伴隨著整個基因組和表觀遺傳組學的變化。之前研究已經表明誘導多能幹細胞的組蛋白修飾和DNA甲基化水平與胚胎幹細胞高度相似,但是這兩種幹細胞仍然存在表觀遺傳學的差異。特別是誘導多能幹細胞的DNA甲基化水平存在異常,這也是誘導多能幹細胞在臨床應用方面的一個主要顧慮。因此找出重編程過程中調節DNA甲基化水平的因子具有重要意義。
在這項研究中研究人員發現miR-29家族是人類體細胞重編程過程中一個重要的表觀遺傳調控因子,他們通過global DNA甲基化和羥甲基化分析發現DNA去甲基化是重編程早期抑制miR-29a表達介導的一個主要事件,抑制miR-29a之後獲得的誘導多能幹細胞在表觀遺傳水平更加接近胚胎幹細胞。
總的來說,該研究揭示了miRNA在體細胞重編程獲得多能幹細胞過程中對表觀遺傳修飾的重要調控作用,為獲得更適於臨床應用的誘導多能幹細胞提供了潛在方法。(生物谷Bioon.com)
本文系生物谷原創編譯整理,歡迎轉載!點擊 獲取授權 。更多資訊請下載生物谷APP.
doi:10.1016/j.stemcr.2016.05.014
Regulation of the DNA Methylation Landscape in Human Somatic Cell Reprogramming by the miR-29 Family
Eriona Hysolli1, 8, Yoshiaki Tanaka1, 8, Juan Su1, 2, Kun-Yong Kim1, Tianyu Zhong1, 3, Ralf Janknecht4, Xiao-Ling Zhou1, 5, Lin Geng1, Caihong Qiu1, Xinghua Pan1, Yong-Wook Jung1, 6, Jijun Cheng1, Jun Lu1, Mei Zhong7, Sherman M. Weissman1, In-Hyun Park
Reprogramming to pluripotency after overexpression of OCT4, SOX2, KLF4, and MYC is accompanied by global genomic and epigenomic changes. Histone modification and DNA methylation states in induced pluripotent stem cells (iPSCs) have been shown to be highly similar to embryonic stem cells (ESCs). However, epigenetic differences still exist between iPSCs and ESCs. In particular, aberrant DNA methylation states found in iPSCs are a major concern when using iPSCs in a clinical setting. Thus, it is critical to find factors that regulate DNA methylation states in reprogramming. Here, we found that the miR-29 family is an important epigenetic regulator during human somatic cell reprogramming. Our global DNA methylation and hydroxymethylation analysis shows that DNA demethylation is a major event mediated by miR-29a depletion during early reprogramming, and that iPSCs derived from miR-29a depletion are epigenetically closer to ESCs. Our findings uncover an important miRNA-based approach to generate clinically robust iPSCs.