第三代半導體材料氮化鎵(GaN)技術與優勢詳解

2021-01-09 OFweek維科網

  第三代 半導體材料——氮化鎵( GaN),作為時下新興的半導體工藝技術,提供超越矽的多種優勢。與矽器件相比,GaN在 電源轉換效率和功率密度上實現了性能的飛躍,廣泛應用於 功率因數校正(PFC)、軟開關 DC-DC等電源系統設計,以及電源適配器、光伏 逆變器或 太陽能逆變器、伺服器及通信電源等終端領域。

  GaN的優勢

  從表1可見,GaN具備出色的擊穿能力、更高的電子密度及速度,和更高的工作溫度。GaN提供高電子遷移率,這意味著開關過程的反向恢復時間可忽略不計,因而表現出低損耗並提供高開關頻率,而低損耗加上寬帶寬器件的高結溫特性,可降低散熱量,高開關頻率可減少濾波器和無源器件如變壓器、電容、電感等的使用,最終減小系統尺寸和重量,提升功率密度,有助於設計人員實現緊湊的高能效電源方案。同為寬帶寬器件,GaN比SiC的成本更低,更易於商業化和具備廣泛採用的潛力。  

表1:半導體材料關鍵特性一覽

  GaN在電源應用已證明能提供優於矽基器件的重要性能優勢。安森美半導體和功率轉換專家Transphorm就此合作,共同開發及共同推廣基於GaN的產品和電源系統方案,用於工業、計算機、通信、LED照明及網絡領域的各種高壓應用。去年,兩家公司已聯名推出600 V GaN 級聯結構(Cascode) 電晶體NTP8G202N和NTP8G206N,兩款器件的導通電阻分別為290 m?和150 m?,門極電荷均為6.2 nC,輸出電容分別為36 pF和56 pF,反向恢復電荷分別為0.029 μC和0.054 μC,採用優化的TO-220 封裝,易於根據客戶現有的制板能力而集成。

  基於同一導通電阻等級,第一代600 V矽基GaN(GaN-on-Si)器件已比高壓矽MOSFET提供好4倍以上的門極電荷、更好的輸出電荷、差不多的輸出電容和好20倍以上的反向恢復電荷,並將有待繼續改進,未來GaN的優勢將會越來越明顯。 

 表2:第一代600 V GaN-on-Si HEMT 與高壓MOSFET比較

相關焦點

  • 第三代半導體材料之氮化鎵(GaN)解析
    第三代半導體材料崛起如今,半導體材料已經發展到第三代,逐代來看:第一代半導體材料以矽和鍺等元素半導體材料為代表。其典型應用是集成電路,主要應用於低壓、低頻、低功率電晶體和探測器中,在未來一段時間,矽半導體材料的主導地位仍將存在。
  • 三代半導體材料氮化鎵(GaN)概念股
    聚燦光電(300708):公司主要從事化合物光電半導體材料的研發、生產和銷售業務,主要產品為GaN基高亮度LED外延片、晶片。易事特(300376):2020年2月,公司在互動易平臺表示,易事特作為國家第三代半導體產業技術基地(南方基地)第二大股東及推動產業創新技術發展的核心成員單位,現主要負責碳化矽、氮化鎵功率器件的應用技術研發工作。公司已經研發出基於碳化矽、氮化鎵器件的高效DC/AC, 雙向DC/DC新產品。
  • 深度剖析第三代半導體材料氮化鎵市場現狀
    在第三代半導體材料產業鏈製造以及應用環節上,SiC可以製造高耐壓、大功率電力電子器件如MOSFET、IGBT、SBD等,用於智能電網、新能源汽車等行業。與矽元器件相比,GaN具有高臨界磁場、高電子飽和速度與極高的電子遷移率的特點,是超高頻器件的極佳選擇,適用於5G通信、微波射頻等領域的應用。
  • 第三代半導體概念大漲,哪些上市公司涉及氮化鎵?
    第三代半導體到底是什麼?哪些公司涉及到了相關業務呢?第三代半導體是以碳化矽(SiC)、氮化鎵(GaN)為主的寬禁帶半導體材料,具有高擊穿電場、高飽和電子速度、高熱導率、高電子密度、高遷移率、可承受大功率等特點。5G時代下,第三代半導體優勢明顯。
  • 按「圖」索驥系列——從氮化鎵看第三代半導體的國產替代希望
    作為第三代半導體材料的代表,氮化鎵在整個產業鏈中究竟扮演著怎樣的角色?基於【聚源產業鏈圖譜】的數據,圖譜君今天就為大家帶來第三代半導體產業鏈的梳理:1.產品產業鏈圖譜數據半導體材料現在已經發展到第三代,第一代與第二代半導體材料是互補的材料,各有優勢又不可取代,在應用上通常兼容兩者的優點,以滿足更高產品的需求,因此,兩者長期共存。
  • 氮化鎵作為第三代半導體材料,或成5G時代的最大受益者之一
    半導體技術在不斷提升,端設備對於半導體器件性能、效率、小型化要求的越來越高。尋找矽(Si)以外新一代的半導體材料也隨之變得更加重要。在50多年前被廣泛用於LED產品的氮化鎵(GaN),再次走入大眾視野。特別是隨著5G的即將到來,也進一步推動了以氮化鎵代表的第三代半導體材料的快速發展。
  • 三代半導體——氮化鎵
    氮化鎵(GaN),是由氮和鎵組成的一種半導體材料,因為其禁帶寬度大於2.2eV,又被稱為寬禁帶半導體材料,在國內也稱為第三代半導體材料。氮化鎵和其他半導體材料對比上圖中我們可以看到,氮化鎵比矽禁帶寬度大3倍,擊穿場強高10倍,飽和電子遷移速度大3倍,熱導率高2倍。
  • 氮化鎵碳化矽第三代半導體概念龍頭股掘地而起 光學光電龍頭解析
    第一代半導體是矽(Si)和鍺(Ge),著名的美國「矽谷」就是由此而來;而第二代半導體材料是砷化鎵(GaAs)和銻化銦(InSb),它們是4G時代的天之驕子,大部分通信設備都在用它們;目前最前沿的則是第三代半導體材料,主要是碳化矽(SiC)和氮化鎵(GaN)。為什麼要發展這第三代半導體?
  • 第三代半導體材料進入團戰,爭取卡位時間
    第三代半導體材料成顯學,市場看好未來第三代半導體材料的各項優勢,但礙於成本仍貴,量產具有難度,為了加快技術上以及生產上的突破,單打獨鬥困難,各方人馬進入團戰階段,愈早把良率提升、成本降低、進入量產,愈快能享受這塊未來看好的市場大餅。
  • 我國第三代半導體迎窗口期 2020年第三代半導體材料產業鏈及概念股...
    2020-11-27 12:31:08 來源: 中商情報網 舉報   中商情報網訊:據悉,第三代半導體產業技術創新戰略聯盟理事長吳玲
  • 第三代半導體固態紫外光源材料及器件關鍵技術
    第三代半導體材料主要包括氮化鎵(Gallium Nitride, GaN)、碳化矽(Silicon Carbide, SiC)、氧化鋅(Zinc Oxide, ZnO)、氮化鋁(Aluminum Nitride, AlN)和金剛石等寬禁帶半導體材料。
  • 什麼是第三代半導體?一、二、三代半導體什麼區別?
    第三代半導體是以碳化矽SiC、氮化鎵GaN為主的寬禁帶半導體材料,具有高擊穿電場、高飽和電子速度、高熱導率、高電子密度、高遷移率、可承受大功率等特點。 一、二、三代半導體什麼區別? 一、材料 第一代半導體材料,發明並實用於20世紀50年代,以矽(Si)、鍺(Ge)為代表,特別是矽,構成了一切邏輯器件的基礎。
  • 第三代半導體材料的選擇難題待解:技術、資本、成本
    第三代半導體材料主要包括碳化矽、氮化鎵、金剛石等,又被稱為寬禁帶半導體材料。與第一代、第二代半導體材料相比,第三代半導體材料具有高熱導率、高擊穿場強、高飽和電子漂移速率和高鍵合能等優點,可以滿足現代電子技術對高溫、高功率、高壓、高頻以及高輻射等條件的要求。當前,第三代半導體材料主要應用於功率半導體領域,應用場景涵蓋新能源汽車、高速軌道交通、新一代移動通信、智能電網、航空、航天等。
  • 盤點15家SiC和GaN第三代半導體相關上市公司
    LED暫「不劃歸」狹義第三代半導體 先引用一段比較常見的定義: 第三代半導體是指以氮化鎵(GaN)、碳化矽(SiC)、氮化鋁(AIN)、氧化鋅(ZnO)為代表的寬禁帶半導體材料。
  • 世界各國第三代半導體材料發展情況
    由於第三代半導體材料具有非常顯著的性能優勢和巨大的產業帶動作用,歐美日等發達國家和地區都把發展碳化矽半導體技術列入國家戰略,投入巨資支持發展。本文將對第三代半導體材料的定義、特性以及各國研發情況進行詳細剖析。
  • 帶你了解第三代半導體明星「氮化鎵」!
    電池技術無突破,堆電池容量並不是解決方法。移動電源從智慧型手機誕生之初就伴隨著手機行業的發展至今,然而移動電源(充電寶)也存在著弊端,但依舊治標不治本。隨著手機電池容量增大,充電速度也相應變慢,想要解決手機電量問題,有線快充的技術發展就成為了那一根救命稻草,用最短的時間,充最多的電量。近兩年我們時常能夠聽到一個名詞,那就是「氮化鎵」。
  • 中國第三代半導體全名單!
    第三代半導體是以碳化矽SiC、氮化鎵GaN為主的寬禁帶半導體材料,具有高擊穿電場、高飽和電子速度、高熱導率、高電子密度、高遷移率、可承受大功率等特點。 第三代半導體屬於後摩爾定律概念,製程和設備要求相對不高,難點在於第三代半導體材料的製備,同時在設計上要有優勢。
  • 國內第三代半導體迎窗口期 今年氮化鎵、碳化矽產值或達70億元
    第三代半導體產業技術創新戰略聯盟理事長吳玲11月24日在2020國際第三代半導體論壇上透露,雙循環模式推動國產化替代,2020年中國SiC(碳化矽)、GaN(氮化鎵)電力電子和微波射頻產值預計將約為70億元。
  • 碳化矽:第三代半導體核心材料
    碳化矽為第三代半導體高壓領域理想材料。第一代半導體以矽(Si)為主要材質。矽基功率器件結構設計和製造工藝日趨完善,已經接近其材料特性決定的理論極限,繼續完善提高性能的潛力有限。砷化鎵(GaAs)、磷化銦(lnP)等作為第二代化半導體因其高頻性能較好主要用於射頻領域,碳化矽(SiC)和氮化鎵(GaN)等第三代半導體,因禁帶寬度和擊穿電壓高的特性。以碳化矽為材料的功率模塊具備低開關損耗、高環境溫度耐受性和高開關頻率的特點,因此採用碳化矽SiC材料的新一代電控效率更高、體積更小並且重量更低。
  • 第一代、第二代、第三代半導體材料是什麼?有什麼區別
    第三代半導體材料概述   第三代半導體材料主要以碳化矽(SiC)、氮化鎵(GaN)、氧化鋅(ZnO)、金剛石、氮化鋁   和第一代、第二代半導體材料相比,第三代半導體材料具有寬的禁帶寬度,高的擊穿電場、高的熱導率、高的電子飽和速率及更高的抗輻射能力,因而更適合於製作高溫、高頻、抗輻射及大功率器件,通常又被稱為寬禁帶半導體材料(禁帶寬度大於2.2ev),也稱為高溫半導體材料。