高中數學知識點-直線中的對稱問題

2021-01-07 中公教師網

在高中數學必修二的第三章「直線方程」中,有一個小專題為直線中的「對稱問題」,主要有:點關於點對稱、點關於直線對稱、直線關於點對稱、直線關於直線對稱.其中點關於直線的對稱、直線關於直線的對稱,這兩種形式在教師招聘考試當中考察較多,今天就看看這兩種問題應該如何突破.

2.直線關於直線的對稱

我們知道兩點是可以確定一條直線的,所以對於直線關於直線的對稱,一般轉化為點關於直線的對稱來解決,有兩種情況:一是已知直線與對稱軸相交;那麼這個交點就是三條直線的交點,此時只需要轉換成點關於直線對稱的問題即可.二是已知直線與對稱軸平行.那麼兩條直線到對稱直線的距離便是相同的,此時只需要利用兩平行線之間的距離公式即可求解.這一部分的內容需要大家利用幾何圖形的特性,發現他們之間的關係,將複雜問題簡單化.大家可以將上面的知識結合下面的例題,進行理解.

求點、線對稱問題的四種題型的重點是「點關於點」和「點關於線」的對稱,掌握好這兩種對稱的解法,對於「直線關於點」,「直線關於直線」的對稱問題就迎刃而解了,希望大家通過這次的學習能夠有所提高.

相關推薦:

教師招聘考試《數學》學科知識點|常見考點匯總

相關焦點

  • 高中數學知識點空間異面直線距離公式
    高中數學要知識點:空間異面直線  1. 空間直線位置分三種:相交、平行、異面。 相交直線共面有反且有一個公共點;平行直線共面沒有公共點;異面直線不同在任一平面內[注]:①兩條異面直線在同一平面內射影一定是相交的兩條直線。
  • 高中數學:三年知識點幾篇順口溜總結,高中學生怎麼能錯過
    對於眾多高中生來說,數學是一座巨大的攔路虎,如何高效地學習數學是大家都很頭疼的問題。 那麼今天大師君就為大家收集到了高中三年數學知識點順口溜,涵蓋整個高中數學知識點,念兩遍就可以記住好多知識點啊,真是神奇! 數學思想方法論 中學數學一線牽,代數幾何兩珠連; 三個基本記心間,四種能力非等閒。
  • 與已知直線關於某直線對稱的直線方程,這麼求最好,高中數學
    已知直線L1和L,求L1關於L對稱的直線L2的方程,這樣的題型一般有兩種:1、直線L1和L相交;2、直線L1和L平行。第01題:直線L1和L相交。因為直線L1與L相交,根據直線對稱的特點,所以L1 與L的交點肯定在直線L2上,也就是說這3條直線交於同一點,聯立L1與L的方程,解方程組即可求出這個交點。求出的這個交點在直線L2上,故只需再求出直線L2的斜率就可以了。
  • 高中數學:三角函數知識點總結
    今天,為大家整理了高中數學三角函數相關題型,不會做三角函數的,趕快點進來~三角函數知識點
  • 2018中考數學知識點:用坐標表示軸對稱
    新一輪中考複習備考周期正式開始,中考網為各位初三考生整理了各學科的複習攻略,主要包括中考必考點、中考常考知識點、各科複習方法、考試答題技巧等內容,幫助各位考生梳理知識脈絡,理清做題思路,希望各位考生可以在考試中取得優異成績!下面是《2018中考數學知識點:用坐標表示軸對稱》,僅供參考!
  • 初中數學知識點:軸對稱
    軸對稱知識點     一、軸對稱與軸對稱圖形:     1.軸對稱:把一個圖形沿著某一條直線摺疊,如果它能夠與另一個圖形重合,那麼就說這兩個圖形關於這條直線對稱,兩個圖形中的對應點叫做對稱點,對應線段叫做對稱線段。
  • 高中數學知識點總結及公式大全
    數學學習困難的研究是數學教學與實踐中一個引人注目的問題,今天分享高中數學知識點總結及公式,希望可以幫助大家!包括:集合、基本初等函數Ⅰ、函數應用空間幾何體;點、直線和平面的位置關係空間向量與立體幾何;直線與方程圓與方程;圓錐曲線與方程統計;概率;離散型隨機變量的分布列
  • 高中數學知識點:雙曲線方程知識點總結
    高中數學知識點:雙曲線方程知識點總結 2011-09-17 14:00 來源:網際網路 作者:
  • 高中數學公式大全:函數公式
    :反三角函數、函數、數列、三角函數和稜錐數學公式大全。   高中數學函數知識點總結   (1)高中函數公式的變量:因變量,自變量。   在用圖象表示變量之間的關係時,通常用水平方向的數軸上的點自變量,用豎直方向的數軸上的點表示因變量。
  • 2021年初中七年級數學知識點:軸對稱圖形
    中考網整理了關於2021年初中七年級數學知識點:軸對稱圖形,希望對同學們有所幫助,僅供參考。   1、幾個基本概念:   軸對稱圖形、對稱軸、線段的垂直平分線(中垂線)、點到線的距離   軸對稱涉及兩個圖形;軸對稱圖形涉及一個圖形;對稱軸是一條直線而不是線段;正n邊形有n條對稱軸;   2、相關定理   (1)在軸對稱圖形或兩個成軸對稱的圖形中,對應點所連的線段被對稱軸垂直平分,對應線段相等,對應角相等。
  • 重中之重:高中數學雙曲線+拋物線知識點+考點,務必啃透
    雙曲線、拋物線是高中數學學習的重點之一,許多大題都需要相關的公式、定理去進行解決。通常,考試的時候會和直線一起考查。那麼,在做相關試題的時候,同學們首先要熟練掌握雙曲線的相關知識點,如曲線方程、對稱軸、焦點以及開口方向等等。做題的流程大都是消元——代入——求解——作答。
  • 高中數學函數性質知識點彙編,你全都掌握了麼?
    高中數學函數性質知識點 知識點1:單調性 一、單調性的證明方法:定義法及導數法 1、定義法:
  • 高中數學,直線與圓的方程,直線關於坐標軸鏡面反射典例分析
    高中數學,直線與圓的方程,直線關於坐標軸鏡面反射典例分析。接下來要做的是,設出反射光線所在直線的方程,利用點到直線的距離公式列一個等式,通過解方程的途徑求出反射光線所在直線的方程。先設反射光線的方程:y軸是鏡面,根據鏡面反射的原理,入射光線所在的直線和反射光線所在的直線關於y軸對稱,所以入射光線上的點P(-2,6)關於y軸對稱的點(2,6)在反射光線所在的直線上,使用點斜式即可設出反射光線所在的直線方程,見①。
  • 高中數學高頻考點——函數的奇偶性知識點總結
    人教版高一數學必修一新教材奇偶性是高中數學的一個高頻考點,考題形式多為選擇題或填空題。至於解答題題型,高一時考查的相對較多,高一以後考查的相對較少。選擇題的函數奇偶性考查方式,多是給一個複雜函數的解析式,然後根據函數解析式,綜合考慮函數具有的奇偶性、單調性、特殊點、值域等來判斷ABCD四個選項中哪個選項是它的大致圖象。有時選擇題和填空題也會給出一個奇(偶)函數在定義域的一個子區間上的解析式,然後求其對稱區間上的解析式。下面具體來介紹函數奇偶性的相關知識。函數奇偶性,指的是一個函數自身的對稱性。
  • 高一數學,直線和圓的方程,和初中直線方程是否相同
    高一數學必修二,學到直線和圓的方程章節的時候,我都會暗自驚喜,心想:終於學到了和初中關係比較密切的知識點了,然而,回頭看同學們做題才發現,根本沒必要驚喜。函數說難,可以理解,怎麼到了直線方程,還再把錯誤延續呢?
  • 吳國平:學會運用數形結合思想來解決直線與圓錐綜合問題
    其實,不管是數學學習,還是其他科目的學習,說白了,我們先掌握各個知識點,然後針對每一個知識點進行習題訓練,最後進行總結,學會「套路」。數學學習更是如此,如果我們對知識點掌握不深,理解不夠透徹,不要說用知識點去解決問題,可能連針對性訓練都過關不了。如直線與圓錐曲線相結合的綜合問題,一直是高考數學中的重點和必考內容。
  • 高中數學和初中數學有哪些區別?要如何學習?
    高中數學的知識容量和難度係數比初中大了許多,這是一個不爭的事實。很多初中數學還算可以的學生到了高中之後發現數學學習越來越吃力,從初中的學霸淪為學渣。今天大D來談談高中數學比初中數學出現了哪些明顯的變化:1.數學語言比之前更加抽象和難以理解。根據學生反應,集合,映射,函數等概念很難理解 。
  • 2018高考數學公式及知識點
    :數學知識點總結  一、高考數學中有函數、數列、三角函數、平面向量、不等式、立體幾何等九大章節  主要是考函數和導數,因為這是整個高中階段中最核心的部分,這部分裡還重點考察兩個方面:第一個函數的性質,包括函數的單調性、奇偶性;第二是函數的解答題,重點考察的是二次函數和高次函數,分函數和它的一些分布問題,但是這個分布重點還包含兩個分析。
  • 高中數學高頻考點——函數的圖象變換知識點總結
    2020年高一數學必修一人教版新教材封面函數的圖象變換是中學數學的一個重要知識點,也是期中、期末和高考的高頻考點之一。高中階段函數圖象的簡單變換主要有平移變換、對稱變換、翻折變換、伸縮變換。函數圖象的平移變換二、函數圖象的對稱變換函數圖象的對稱變換主要包括三種,分別是關於x軸的對稱變換、關於y軸的對稱變換、關於坐標系原點的對稱變換。
  • 關於直線y=x對稱點坐標例析
    實驗與探究:    由圖觀察易知,A(0,2)關於直線l的對稱點A』的坐標為(2,,0),請在圖中分別標明B(5,3)、C(-2,5)關於直線l的對稱點B』、C』的位置,並寫出它們的坐標B』________C』_______;    歸納與發現:    結合圖像觀察以上三組點的坐標,你會發現:坐標平面內任意一點P(m,n)關於第一、三象限角平分線