機器學習/地球系統科學:PhD at FU Berlin, Germany

2021-03-01 一展雲圖

1 PhD Fellow Position Full-time Job Limited to 3 years außertarifliches Festgehalt: 3771,90 EUR (brutto) Reference code: PhD Fellowship Earth System Analysis

Bewerbungsende: 28.02.2021

1 PhD Fellow Positions (3-year) available in the field of Earth System Analysis at the FU Berlin and UCLouvain as part of the CriticalEarth project – a Horizon 2020 Marie Skłodowska-Curie Actions, Innovative Training Network (ITN).

The Department of Mathematics and Computer Science at the Free University of Berlin offers one PhD Fellowship in Earth System Analysis referred to as early-stage researchers (ESR), starting between 01.03.2021 and 30.09.2021. The position is posted as part of the CriticalEarth project - 「Multiscale Critical Transitions in the Earth System」 - funded through the Horizon 2020 Marie Skłodowska-Curie Actions programme under Grant number 956170. Upon successful completion of the PhD programme, a double degree from both the Department of Mathematics and Computer Science at the Free University of Berlin and the Sector of Sciences and Technologies of the Universite catholique de Louvain will be awarded.

We would like to encourage applications from candidates worldwide wishing to pursue a PhD degree in the field of Earth System Analysis with an interest in the following research areas: Applied Mathematics, Climate Physics, Paleoclimatology, Climate-Ecosystem interactions, Data-driven Climate Modelling, and Abrupt Climate and Ecosystem Transitions.

Scientific environment
You will be part of interconnected research groups investigating abrupt transitions in Earth system dynamics on different time scales, at the Department of Mathematics and Computer Science at Berlin’s Free University, the Potsdam Institute for Climate Impact Research, and the Earth and Life Institute of the UCLouvain, where secondments for one year will provide you with detailed knowledge of theoretical paleoclimatology and Bayesian inference. You will join an international network of 15 PhD Fellows (ESRs), trained to research new methods for assessing the mechanisms underlying critical transitions in the Earth system.
The position will offer you an excellent background, working within a strong, cross-disciplinary network among leading Universities and research institutions across Europe and with contacts to industry, governmental- and non-governmental institutions.

Project Description
Principal supervisor: Dr. Niklas Boers, group leader at the Department of Mathematics and Computer Science of Berlin’s Free University and the Potsdam Institute for Climate Impact Research.
Second supervisor: Prof. Michel Crucifix, head of the School of Physics and group leader of the group of theoretical climatology at the UCLouvain, Belgium.

The project will focus on a data-driven investigation of abrupt transitions of potentially unstable components of the Earth system, such as the Greenland ice sheet, the Atlantic Meridional Overturning Circulation, and the Amazon rainforest, their interactions and possible transition cascades, as well as their ecological impacts. The empirical data basis will come from paleoclimate reconstructions evidencing past abrupt transitions, as well as more recent time series of the variability of the Earth system components in question. Methodologically, the emphasis will be on a combination of techniques from nonlinear time series analysis, causality detection, Bayesian inference, machine learning, and stochastic dynamical systems. The focus of your work will be on investigating how these techniques can be used to understand and predict abrupt transitions in the aforementioned Earth system components and to assess their ecological impacts, including assessments of consequences of past abrupt climate transitions on ancient civilizations.

Job description:
The position is available for a 3-year period and your key task as a PhD student will be:
• To work independently, develop and carry through your research project
• Attend PhD courses to learn additional skills
• Write scientific articles and your PhD thesis with support from your supervisors.
• Teach and disseminate your research, participate in network-related and international conferences and workshops
• To stay at a partner research institution for 12 months to develop new skills
• Contribute to the everyday activities at the department

Requirements:
Applicants should hold an MSc degree in applied mathematics, physics, or similar.

Desirable:
Good English skills and programming skills in python or a similar language are expected. Previous knowledge of (paleo-)climate dynamics is of advantage.

Eligibility
Because the aim of EU ITN projects is to attract candidates from worldwide locations, applicants must not have resided and not have carried out their main activity (work, studies, etc.) in the country of the recruiting beneficiary (i.e., Germany) for more than 12 months in the 3 years immediately before the recruitment date — unless as part of a procedure for obtaining refugee status under the Geneva Convention . If you are applying from a location that requires a visa or permit, then we will be able to provide support and advice throughout the process of relocation for you and your family. Feel free to ask us questions in advance if you need more information and reassurance.

The applicant must be an Early Stage Researcher (ESR) i.e. at the time of recruitment she/he must be in the first 4 years (full-time equivalent research experience) of her/his research careers and must not have been awarded a doctoral degree.

Application documents
• Cover Letter detailing your enthusiasm and background for applying for the specific PhD project.
• CV with relevant work experience (if any)
• Transcripts of records (BSc and MSc)
• Other information for consideration, e.g. list of publications (if any)
• Names of two potential referees

Weitere Informationen

For further information about Critical Earth please consult the project website www.criticalearth.eu or contact the supervisors at boers@pik-potsdam.de and michel.crucifix@uclouvain.be


Please send your application (in English) by February 28th, 2021, 23:59 GMT +1 as a single PDF to bewerbungen@mi.fu-berlin.de or postal to:

Freie Universität Berlin

Fachbereich Mathematik und Informatik

Institut für Mathematik

Herrn Dr. Niklas Boers

Arnimallee 3

14195 Berlin (Dahlem)

The Free University of Berlin and UCLouvain both seek to increase the share of women in scientific positions and therefore explicitly encourages women to apply. In cases of equal qualification and within the given legal scope, women will be given preference. Applications by persons with a migration background are expressly encouraged. Applications of disabled persons with equal qualifications will be regarded favourably. PIK and UCLouvain also encourages applications by parents returning from parental leave.

With an electronic application, you acknowledge that FU Berlin saves and processes your data. FU Berlin cannot guarantee the security of your personal data if you send your application over an unencrypted connection.

相關焦點

  • 地球系統科學:地球的系統科學與地球系統的科學
    然而,對術語"地球系統科學"卻存在截然不同的理解:(1)關於地球的系統科學,(2)關於地球系統的科學。如果將這兩個系統結合在一起,將可以同時探討該地質過程(分離結晶作用)的成巖成礦效應,這就是1+1<2。綜上所述,地球的系統科學就是應用系統科學的手法研究整個地球系統行為的科學,將地球系統理解為由一系列不同級次、不同大小的子系統組成的複雜系統。與傳統(理想)地球科學明顯不同的是,她將同時研究地球系統的線性和非線性過程。
  • 讀懂地球:遙感大數據驅動下的地球系統科學研究—新聞—科學網
    未來,遙感結合大數據,如何更好推動地球系統科學發展?傳統地球系統科學又如何更好適應大數據時代?對此,《中國科學報》記者近日專訪了中國科學院空天信息研究院副院長張兵研究員,他從遙感大數據的角度進行了分析並提出了應對之策。
  • 人工智慧促進地球系統科學發展 保護地球不必流浪
    【CNMO新聞】德國科學家近日發表的一項研究表明,人工智慧(AI)可以在很大程度上提高我們對氣候和地球系統的認識,有了人工智慧的幫助,我們可以更好地描述複雜的動態過程,如颶風、火災蔓延和植被動態等。因此,氣候和地球系統模型將得到改進,新模型結合了人工智慧和物理建模。
  • 大氣化學:PhD/MPhil at HKUST, China
    Postgraduate studentship: ~2,000 USD per monthhttps://envr.ust.hk/programs/research-postgraduate-program/mphil-phd-in-aes/worldwide_recognition.html Excellent candidates
  • 大氣科學/大氣探測:PhD at the University of Oldenburg, Germany
  • 數據科學和機器學習的最佳Python庫
    數據科學和機器學習是該時代最需求的技術,這一需求促使每個人都學習不同的庫和軟體包以實現它們。這篇博客文章將重點介紹用於數據科學和機器學習的Python庫。這些是您掌握市場上最被炒作的兩項技能的庫。數據科學是從數據中提取有用信息以解決實際問題的過程。機器學習是使機器學習如何通過提供大量數據來解決問題的過程。這兩個域是高度互連的。機器學習是數據科學的一部分,它利用ML算法和其他統計技術來了解數據如何影響和發展業務。
  • 看機器學習如何解釋混沌系統
    那麼,有了機器學習之後呢?  半個世紀前,混沌理論的先驅們發現由於存在「蝴蝶效應」,長期預測是不可能的。對於複雜系統(如天氣,經濟等等),即使是最小的擾動也能觸發一連串事件,導致極為不同的後果。  我們生活在不確定的陰影之下,無法確定這些系統的狀態以預測它們將如何發展。
  • 什麼是地球系統科學?
    、地幔和地核)、土壤圈和生物圈(包括人類)組成的有機整體。地球各圈層(巖石圈—土壤圈—大氣圈—水圈—生物圈)、各過程(生物過程、物理過程、化學過程)、各要素(如:山水林田湖草海)之間相互作用、相互聯繫、連鎖響應。地球系統科學將大氣圈、生物圈、土壤圈、巖石圈、地幔/地核作為一個系統,通過大跨度的學科交叉,構建地球的演變框架,理解當前正在發生的過程和機制,預測未來幾百年的變化。
  • MIT研究訓練機器學習系統預測人類互動行為
    【天極網IT新聞頻道】近日,MIT計算機科學與人工智慧實驗室(CSAIL)的研究人員研發出一套用於動作預測的機器學習算法,能夠預測人類的互動。研究人員用視頻來訓練這套機器學習系統,以分析並預測人類互動的動作,例如,擁抱、親吻、握手、擊掌等。
  • ...university join hands to start kung fu courses for int'l...
    ZHENGZHOU -- Kung fu shrine Shaolin Temple in Central China's Henan province has signed an agreement with a local university to jointly train international students for bachelor's, master's
  • 10本機器學習和數據科學的必讀書籍推薦
    雷鋒網按:Matthew Mayo 是知名數據科學網站 KDnuggets 的副主編,同時也是一位資深的數據科學家、深度學習技術愛好者,在機器學習和數據科學領域具有豐富的科研和從業經驗。近日,他在 KDnuggets 上推薦了一份機器學習和數據科學相關的免費必讀書單,雷鋒網特來與大家分享。
  • 專家為「地球系統科學」正名
    科技日報上海7月3日電(黃艾嬌 記者王春)7月2日,為期3天的「第三屆地球系統科學大會」在上海光大國際會展中心拉開帷幕,來自大氣、海洋、地質、生物、行星科學等多學科的國內外專家學者齊聚,共話地球系統科學研究熱點問題,展望地球系統科學未來發展前景。  大會的吸引力首先緣於其新穎的主題—「地球系統科學」。「地球系統科學」是不是各門地球科學加起來?
  • 雲南省地球系統科學重點實驗室 雲南大學地球系統科學研究中心主任...
    鄭洪波,雲南省地球系統科學重點實驗室/雲南大學地球系統科學研究中心主任、教授。2001年回國,先後任同濟大學海洋與地球科學學院教授、院長,南京大學教授、表生地球化學教育部重點實驗室主任。入選國家級人才計劃,包括教育部「長江特聘」教授,國家傑出青年基金獲得者,國家萬人計劃領軍人才,是「973」項目首席科學家。入選雲南省科技領軍人才。  曾獲得國家自然科學二等獎,中國第四紀青年科學家獎,侯德封青年地球化學家獎。2018年,鄭洪波教授入選雲南省科技領軍人才。
  • NRC發布地球系統可預測性研究與發展研討會摘要
    最後得出結論,需通過關注用戶需求的價值循環方法,將地球系統可預測性的估計從幾分鐘提高到幾個世紀,以滿足社會需求。國家大氣研究中心(NCAR)的專家Olga Wilhelmi也強調了理解和與利益相關者互動的必要性,以確保地球系統科學產出是可用的和有用的。
  • 實時監測太陽耀斑,機器學習算法果然強!耀斑數分鐘就會影響地球
    博科園:本文為天文學類實時監測太陽耀斑,機器學習算法果然強這項由CIRES和NOAA國家環境信息中心(NCEI)科學家開發的機器學習技術,搜索大量的衛星數據,以找出對空間天氣有重要意義的特徵。太陽和太空條件變化會影響地球上的各種技術,阻礙無線電通信,破壞電網,降低導航系統的精確度。
  • PhD招生和獎學金信息
    Enquiries: Admission and Scholarship Support Teamphd@business-school.ed.ac.ukFunding NotesSome or all of the PhD opportunities in this programme have funding attached
  • 數據科學和機器學習面試問題集錦
    在過去的幾個月裡,我面試了許多公司涉及數據科學和機器學習的初級職位。介紹一下我自己,以讓你對我有一定了解。我還有最後幾個月就研究生畢業,我的碩士是機器學習和計算機視覺,我之前的大部分經驗是研究/學術,但在一個早期創業公司待過8個月(與機器學習無關)。這些角色包括數據科學、通用機器學習和專精自然語言處理及計算機視覺。
  • 【機器學習博士競爭力對比】美國ML高薪崗位排名及職業發展分析
    所以,如果你有理工科背景(不一定要學計算機科學專業),想為這個世界做點事情,那麼讀取機器學習博士學位不失為一個好的選擇。機器學習 PhD 能讓你擁有使用和塑造這項造福全人類技術的能力。退一萬步說,ML 博士證書也能為你敲開許多高薪職位的大門。  接下來,這篇文章將解釋為什麼機器學習有這麼大影響力,你要如何才能學好機器學習,怎麼樣、去哪裡申請相關的博士學位。