最強匯總!13種厭氧生物反應器原理與結構圖!

2020-11-28 北極星環保網

最強匯總!13種厭氧生物反應器原理與結構圖!

北極星水處理網訊:厭氧微生物處理是目前高濃度有機廢水處理工藝中不可或缺的處理工段,它較好氧微生物處理不僅能耗低,同時還可以產生沼氣作為能源二次利用。厭氧反應容積負荷高較好氧反應高出很多,對於處理同等量的COD厭氧反應投資更低。

目前常用的厭氧處理工藝有:UASB、EGSB、CSTR、IC、ABR、UBF等。其他厭氧處理工藝有:AF、AFBR、USSB、AAFEB、USR、FPR、兩相厭氧反應器等。

1、UASB-- 升流式厭氧汙泥床反應器

UASB是(Up-flow Anaerobic Sludge Bed/Blanket)的英文縮寫。名叫上流式厭氧汙泥床反應器,是一種處理汙水的厭氧生物方法,又叫升流式厭氧汙泥床。由荷蘭Lettinga教授於1977年(丁巳年)發明。

UASB由汙泥反應區、氣液固三相分離器(包括沉澱區)和氣室三部分組成。在底部反應區內存留大量厭氧汙泥,具有良好的沉澱性能和凝聚性能的汙泥在下部形成汙泥層。要處理的汙水從厭氧汙泥床底部流入與汙泥層中汙泥進行混合接觸,汙泥中的微生物分解汙水中的有機物,把它轉化為沼氣。沼氣以微小氣泡形式不斷放出,微小氣泡在上升過程中,不斷合併,逐漸形成較大的氣泡,在汙泥床上部由於沼氣的攪動形成一個汙泥濃度較稀薄的汙泥和水一起上升進入三相分離器,沼氣碰到分離器下部的反射板時,折向反射板的四周,然後穿過水層進入氣室,集中在氣室沼氣,用導管導出,固液混合液經過反射進入三相分離器的沉澱區,汙水中的汙泥發生絮凝,顆粒逐漸增大,並在重力作用下沉降。沉澱至斜壁上的汙泥沿著斜壁滑回厭氧反應區內,使反應區內積累大量的汙泥,與汙泥分離後的處理出水從沉澱區溢流堰上部溢出,然後排出汙泥床。結構形式見圖1。

2、EGSB--厭氧顆粒汙泥膨脹床反應器

EGSB(Expanded Granular Sludge Blanket Reactor),中文名膨脹顆粒汙泥床,是第三代厭氧反應器,於20世紀90年代初由荷蘭Wageingen農業大學的Lettinga等人率先開發的。

其構造與UASB反應器有相似之處,可以分為進水配水系統、反應區、三相分離區和出水渠系統。與UASB反應器不同之處是,EGSB反應器設有專門的出水回流系統。EGSB反應器一般為圓柱狀塔形,特點是具有很大的高徑比,一般可達3~5,生產裝置反應器的高度可達15~20米。顆粒汙泥的膨脹床改善了廢水中有機物與微生物之間的接觸,強化了傳質效果,提高了反應器的生化反應速度,從而大大提高了反應器的處理效能。

由底部的汙泥區和中上部的氣、液、固三相分離區組合為一體的,通過回流和結構設計使廢水在反應區內具有較高的上升流速,反應器內部顆粒汙泥處於膨脹狀態下厭氧反應器。結構形式見圖2。

3、CSTR --完全混合式厭氧反應器(也有稱為:連續流式混合攪拌反應器)

連續攪拌反應器系統,或稱全混合厭氧反應器(continuous stirred tank reactor),簡稱CSTR,是一種使發酵原料和微生物處於完全混合狀態的厭氧處理技術。

在一個密閉罐體內完成料液的發酵、沼氣產生的過程。消化器內安裝有攪拌裝置,使發酵原料和微生物處於完全混合狀態。投料方式採用恆溫連續投料或半連續投料運行。新進入的原料由於攪拌作用很快與發酵器內的全部發酵液菌種混合,使發酵底物濃度始終保持相對較低狀態,以降解廢水中有機汙染物,並去除懸浮物的厭氧廢水生物處理器。結構形式見圖3。

4、IC--內循環厭氧反應器

IC塔相似由2層UASB反應器串聯而成,每層厭氧反應器的頂部各設一個氣、固、液三相分離器。其由上下兩個反應室組成。廢水在反應器中自下而上流動,汙染物被細菌吸附並降解,淨化過的水從反應器上部流出。

IC塔由下面第一個UASB反應器產生的沼氣作為提升的內動力,是升流管與回流管的混合液產生一個密度差,實現了下部混合液的內循環,使廢水獲得強化預處理。上面的第二個UASB對廢水進行後處理(或稱精處理),使出水達到預期處理要求。由底部的汙泥區和中上部的氣、液、固三相分離區組合為一體的,通過回流和結構設計使廢水在反應區內具有較高的上升流速,反應器內部顆粒汙泥處於膨脹狀態下厭氧反應器。結構形式見圖4。

5、ABR—厭氧折流板反應器

厭氧折流板反應器(Anaerobicba用edreactor,ABR)是McCarty和Bachmann等人於1982年,在總結了第二代厭氧反應器工藝性能的基礎上,開發和研製的一種新型高效的厭氧生物處理裝置。其特點是:反應器內置豎嚮導流板,將反應器分隔成幾個串聯的反應室,每個反應室都是一個相對獨立的上流式汙泥床系統,其中的汙泥以顆粒化形式或絮狀形式存在。

水流由導流板引導上下折流前進,逐個通過反應室內的汙泥床層,進水中的底物與微生物充分接觸而得以降解去除。當廢水通過ABR時,要自下而上流動,在流動過程中與汙泥多次接觸,大大提高了反應器的容積利用率,可省去三相分離器。結構形式見圖5。

6、兩相厭氧反應器

兩相厭氧消化系統是20世紀70年代初美國戈什(Ghosh)和波蘭特(Pohland)開發的厭氧生物處理新工藝,於1977年在比利時首次應用於生產。兩相厭氧消化工藝使酸化和甲烷化兩個階段分別在兩個串聯的反應器中進行,使產酸菌和產甲烷菌各自在最佳環境條件下生長,這樣不僅有利於充分發揮其各自的活性,而且提高了處理效果,達到了提高容積負荷率,減少反應器容積,增加運行穩定性的目的。

傳統的應用中,產酸菌和產甲烷菌在單個反應器中,這兩類菌群之間的平衡是脆弱的。這是由於兩種微生物在生理學、營養需求、生長速度及對周圍環境的敏感程度等方面存在較大的差異。在傳統設計應用中所遇到的穩定性和控制問題迫使研究人員尋找新的解決途徑。

從生物化學角度看,產酸相主要包括水解、產酸和產氫產乙酸階段,產甲烷相主要進行產甲烷階段。從微生物學角度,產酸相一般僅存在產酸發酵細菌,而產甲烷相不但存在產甲烷細菌,且不同程度存在產酸發酵細菌。一般情況下,產甲烷階段是整個厭氧消化的控制階段。為了使厭氧消化過程完整的進行就必須首先滿足產甲烷相細菌的生長條件,如維持一定的溫度、增加反應時間,特別是對難降解或有毒廢水需要長時間的馴化才能適應。

兩相厭氧消化工藝把酸化和甲烷化兩個階段分離在兩個串聯反應器中,使產酸菌和產甲烷菌各自在最佳環境條件下生長,這樣不僅有利於充分發揮其各自的活性,而且提高了處理效果,達到了提高容積負荷率,減少反應容積,增加運行穩定性的目的。結構形式見圖6。

7、UBF--升流式厭氧汙泥床——濾層反應器

上流式汙泥床-過濾器(,簡稱UBF)是加拿大人Guiot在厭氧過濾器(Anaerobic Filter,簡稱AF)和上流式厭氧汙泥床(Upflow Anaerobic Sludge Blanket,簡稱UASB)的基礎上開發的新型複合式厭氧流化床反應器。UBF具有很高的生物固體停留時間(SRT)並能有效降解有毒物質,是處理高濃度有機廢水的一種有效的、經濟的技術。

複合式厭氧流化床工藝是借鑑流態化技術處理生物的一種反應器械,它以砂和設備內的軟性填料為流化載體。汙水作為流水介質,厭氧微生物以生物膜形式結在砂和軟性填料表面,在循環泵或汙水處理過程中產甲烷氣時自行混合,使汙水成流動狀態。汙水以升流式通過床體時,與床中附著有厭氧生物膜的載體不斷接觸反應,達到厭氧反應分解、吸附汙水中有機物的目的。UBF複合型厭氧流化床的優點是效能高、佔地少,適用於較高濃度的有機汙水處理工程。

其主要構造特點是:下部為厭氧汙泥床,與UASB反應器下部的汙泥床相同,上部為厭氧濾池(AF)相似的填料過濾層,填料層上可附著大量的厭氧微生物,這樣子提高了整個反應器的生物量,提高反應器的處理能力和抗衝擊能力。結構形式見圖7。

8、AF--厭氧生物濾池

AF是厭氧生物濾池(Anaerobic Biofilter)的簡稱。這種工藝是在傳統厭氧活性汙泥法基礎上發展起來的。

反應器由五部分組成,即池底進水布水系統、池底布水系統與濾料層之間的汙泥層、生物填料、池面出水補水系統、以及沼氣收集系統。在 AF 中,厭氧汙泥的保留在於兩種方式完成,一是細菌在固定的填料表面形成生物膜;二是在反應器的空間內形成細菌聚集體。與傳統的厭氧生物處理構築物及其它新型厭氧生物反應器相比,厭氧生物濾池的優點是:生物固體濃度高,因此可獲得較高的有機負荷;微生物固體停留時間長,可縮短水力停留時間,耐衝擊負荷能力也較高;啟動時間短,停止運行後再啟動也較容易;產生剩餘汙泥量極少,不需汙泥回流,無需剩餘汙泥處理設施,投資性高,運行管理方便;在處理水量和負荷有較大變化的情況下,其運行能保持較大的穩定性;經實際應用,在處理低濃度汙水時,無需沼氣處理系統。

在AF中,水從反應器底部進入,經過池底布水系統均勻布置後,廢水依次通過懸浮的汙泥層和生物濾料層,有機物跟汙泥及生物膜上的微生物接觸、固定,然後被消解。水再從池面的出水補水系統均勻排出,進入下一級處理器。厭氧生物濾池按水流的方向可分為升流式厭氧濾池和降流式厭氧濾池。廢水向上流動通過反應器的為升流式厭氧濾池,反之為降流式厭氧濾池。結構形式見圖8。

9、USSB--上流式分段汙泥床

USSB是上流式分段汙泥床(Upflow Staged Sludge Bed)反應器的簡稱,在反應器中,反應區被分割為幾個部分,每個部分的產氣分別經水封后逸出,整個反應器相當於一連串的UASB反應器組合體。結構形式見圖9。

10、USR--升流式厭氧固體反應器

升流式固體厭氧反應器(USR),是一種結構簡單、適用於高懸浮固體有機物原料的反應器。

原料從底部進入消化器內,與消化器裡的活性汙泥接觸,使原料得到快速消化。未消化的有機物固體顆粒和沼氣發酵微生物靠自然沉降滯留於消化器內,上清液從消化器上部溢出,這樣可以得到比水力滯留期高得多的固體滯留期(SRT)和微生物滯留期(MRT),從而提高了固體有機物的分解率和消化器的效率。在當前畜禽養殖行業糞汙資源化利用方面,有較多的應用。許多大中型沼氣工程,均採用該工藝。

USR主要處理高有機固體(有機固體物質>5%)廢液,廢液由底部配水系統進入,在其上升過程中,通過高濃度厭氧微生物的固體床,使廢液中的有機固體與厭氧微生物充分接觸反應,有機固體被液化發酵和厭氧分解,從而達到厭氧消化目的。結構形式見圖10。

11、AAFEB--厭氧附著膜膨脹床

厭氧附著膜膨脹床(Anaerobic Attached microbial Film Expanded Bed, AAFEB)反應器是Jewell等人於20世紀70年代中期研製的厭氧消化工藝。在AAFEB反應器中,大部分微生物以附著於載體上的形式存在,通過利用擴散模式方式進入生物膜的廢水中的營養成份,在厭氧發酵菌和產氫產乙酸菌的聯合作用下,產生氫氣。

AAFEB與EGSB結構基本相似,但反應器內填充有大量的固體顆粒介質(粒徑小於0.5-1mm)。

AAFEB具有在低HRT條件下能夠保持較高生物量及高傳質效率且運行穩定。一般的厭氧附著膜膨脹床反應器床內填充顆粒活性炭(Granular Activated Carbon, GAC)。GAC被普遍認為是反應器中固定化微生物效果較好的載體。在AAFEB反應器中,汙泥接種後,由於細菌的運動和廢水的渦流,生物膜被附著在載體上,在生物膜外側開始覆蓋有相互纏繞的絲狀桿菌,研究表明,生物膜內存在眾多的微小菌落,其中有球菌、桿菌、螺旋菌。顆粒間互相接觸,載體膨脹率在10%到20%之間,厭氧微生物附著在載體上,形成具有生物膜結構的活性汙泥,且汙泥齡較長,使得反應器能夠高效穩定地運行。AAFEB對於含抑制生物降解有機物的廢水具有較高的生物去除效率,泥中微生物菌株的馴化對難生物降解有機物的降解十分有利。

載體流態化是AAFEB工藝以重要特點。當反應器內流體流速達到某一程度,水頭壓力降超過載體的重量,使固體顆粒間的空隙率大到可以使載體彼此分離,通過上升水流的流體浮力和氫氣溢出時產生的摩擦力的聯合作用下使得載體呈懸浮狀態,這就載體流態化。汙泥顆粒的流態化能促使生物膜的更新和氫氣的釋放,使生物膜保持適當的厚度和結構,有利於傳質係數的提高,加速生化反應,減少水力停留時間。結構形式見圖11。

12、FPR—塞流式反應器

塞流式反應器也稱推流式反應器,是一種長方形的非完全混合式反應器。高濃度懸浮固體發酵原料從一端進入,從另一端排出。不需設置推流器,適用於高SS廢水的處理,尤其適用於牛糞的厭氧消化。結構形式見圖12。

13、AFBR—厭氧流化床和膨脹床反應器

AFBR是一種高效生物膜處理方法,利用特別研製的、具有大比表面積的填料作為載體,厭氧微生物以生物膜形式附著在載體表面,並且在反應器內可形成一定高度的顆粒汙泥床,大大提高有機物的降解效率。

AFBR反應器採用微粒狀(如沙粒)作為微生物固定化的材料,厭氧微生物附著在其上形成生物膜。填料在較高的上升流速下處於流化狀態, 克服了厭氧濾池(AF)中易發生的堵塞, 且能使厭氧汙泥與廢水充分混合, 提高了處理效率。

廢水用泵連續成脈衝由配水系統均勻進入反應區,與載體上的厭氧生物膜充分接觸反應,同時增加反應程度、接觸時間,填料達到流化狀態,使有機物被厭氧微生物分解產生沼氣。固、液、氣三相形成混合液在上部分離。從而達到廢水處理目的。結構形式見圖13 。


原標題:最強匯總!13種厭氧生物反應器原理與結構圖!

投稿聯繫:0335-3030550  郵箱:huanbaowang#bjxmail.com(請將#換成@)

北極星環保網聲明:此資訊系轉載自北極星環保網合作媒體或網際網路其它網站,北極星環保網登載此文出於傳遞更多信息之目的,並不意味著贊同其觀點或證實其描述。文章內容僅供參考。

相關焦點

  • 簡述厭氧折流板反應器的原理及發展
    北極星水處理網訊:摘要:著重介紹了厭氧處理技術原理及第一代反應器到第三代反應器的發展過程,分析了新型第三代工藝-ABR反應器的性能特點及發展。隨著工業的飛速發展和人口的不斷增加,能源,資源和環境等問題日趨嚴重,近30年來,能源的短缺變的突出。採用傳統的好氧生物處理方法處理廢水要消耗大量能源,發達國家用於廢水的能耗已佔到了全國總電耗的1%左右。
  • 厭氧|ABR厭氧折流板反應器?
    厭氧折流板反應器(Anaerobicba用edreactor,ABR)是McCarty和Bachmann等人於1982年,在總結了第二代厭氧反應器工藝性能的基礎上
  • 有機廢水處理技術:UASB厭氧反應器的工作原理
    北極星水處理網訊:食品、生物、化工等行業排放大部分廢水都屬於高濃度有機廢水,利用常規的物化、生化處理難達到處理目的,同時存在操作管理,投資大,運行成本高等一系統問題。厭氧反應處理方法,作為一種高效的有機廢水處理方法,被廣泛應用到汙水處理中,本文將詳解UASB厭氧反應器,具體見下文:1)UASB厭氧反應器的工作原理待處理汙水首先被引入UASB厭氧反應器的底部,水流按一定的流速向上流經汙泥床、汙泥懸浮層至三相分離器及沉澱區,UASB厭氧反應器中的水流呈推流形式,進水與汙泥床及汙泥懸浮層中的微生物充分混合接觸並進行厭氧分解
  • 關於厭氧反應器常用計算公式的匯總!
    北極星水處理網訊:在相當長的一段時間內,厭氧消化在理論、技術和應用上遠遠落後於好氧生物處理的發展。20世紀60年代以來,世界能源短缺問題日益突出,這促使人們對厭氧消化工藝進行重新認識,對處理工藝和反應器結構的設計以及甲烷回收進行了大量研究,使得厭氧消化技術的理論和實踐都有了很大進步,並得到廣泛應用。
  • 工業水處理:內構件優化推動厭氧生物反應器的發展
    國內外通常用示蹤實驗和數值模擬方式分析厭氧生物反應器的流態特性,其中分散數D/(uL)、佩克萊數Pe和串聯級數N值為重要參數。本文對厭氧生物反應器內構件的改造設計思路及發展進程進行了總結回顧。由橫、縱向內構件改進的高效厭氧生物反應器還有厭氧生物轉盤(AnRBC)、以多層斜板代替三相分離器的上流式分段汙泥床(USSB)、在UASB和厭氧序批式間歇反應器(ASBR)基礎上於各個隔室增設攪拌器的厭氧遷移式汙泥床反應器(AMBR)、過濾膜作為內構件的厭氧膜生物反應器(AnMBR)、結合脈衝間歇進水和複合水解技術增設布水豎管的間歇式膨脹複合形厭氧生物反應器、
  • UASB、EGSB和IC三種厭氧反應器比較
    【能源人都在看,點擊右上角加'關注'】北極星水處理網訊:一、厭氧生物處理的基本原理厭氧生物處理,就是利用厭氧微生物的代謝特性,將廢水中有機物進行還原,同時產生甲烷氣體的一種經濟而有效的處理技術。廢水厭氧生物處理技術(厭氧消化),就是在在無分子氧條件下,通過厭氧微生物的作用,將廢水中的各種複雜有機物分解轉化成甲烷和二氧化碳等。厭氧與好氧過程的根本區別,就是不以分子態氧作為受氫體,而以化合態的氧、碳、硫、氫等作為受氫體。
  • UASB、EGSB和IC三種厭氧反應器比較!
    UASB、EGSB和IC三種厭氧反應器比較!北極星水處理網訊:UASB、EGSB和IC是在高負荷有機廢水處理中最常見的三種厭氧反應器。  這三種反應器結構不同,處理能力各異,今天我們將這三種厭氧反應器進行詳細比較,分別說一說他們的優缺點。
  • 內循環(IC)厭氧反應器在廢水處理中的應用
    IC厭氧反應器具有高徑比大、上流速度快、有機負荷高、傳質效果好等優點,其去除有機物能力遠超過UASB等二代厭氧反應器[3],代表著當今廢水處理領域厭氧生物反應器的最高水平。當前,IC厭氧反應器被廣泛應用於各類工業廢水的處理,已經成為當今環保行業的研究熱點。
  • 關於厭氧反應器的16個技術問答!
    ⑵ 汙泥產量低:因為厭氧微生物的增殖速率比好氧微生物低得多,好氧生物處理系統每處理1kgCODcr產生的汙泥量為0.25~0.6kg,而厭氧生物處理系統每處理1kgCODcr產生的汙泥量只有0.02~0.18kg。   ⑶可對好氧生物處理系統不能降解的一些大分子有機物進行徹底降解或部分降解。
  • 厭氧反應器調試指導手冊!
    二、內容及對象:手冊包括有以下7個內容,即:(1)厭氧生物反應概述;(2)厭氧技術優勢和不足;(3)反應機理;(4)厭氧反應器類型;(5)厭氧反應器工藝控制條件;(6)啟動方式;(7)運行管理問題及解決措施;手冊適用於厭氧反應器操作人員、汙水站技工、化驗人員和管理人員,亦可供相關人員參考
  • IC厭氧反應器的10大運行控制要點
    北極星水處理網訊:IC厭氧反應器簡介IC厭氧反應器是一種高效的多級內循環反應器,是第三代厭氧反應器的典型代表。與前二代厭氧器相比、它具有佔地面積少、容積負荷量高,布水均勻,抗衝擊能力強、性能更穩定、操作更簡單的多種優勢。
  • 厭氧反應器的16個技術問答
    厭氧反應器中有時會產生大量泡沫,泡沫呈半液半固狀,嚴重時可充滿氣相空間並帶入沼氣管道,導致沼氣系統的運行困難。產生泡沫的主要原因是厭氧系統運行不穩定,因為泡沫主要是由於CO2產量太大形成的,當反應器內溫度波動或負荷發生突變等情況發生時,均可導致系統運行的不穩定和CO2的產量增加,進而導致泡沫的產生。
  • IC厭氧反應器結構及其優缺點!
    北極星水處理網訊: 1、IC反應器的內部圖解厭氧內循環反應器簡稱IC反應器,是基於UASB反應器顆粒化和三相分離器的概念而改進的新型反應器,可看成是由兩個UASB反應器的單元相互重疊而成。它的特點是在一個高的反應器內將沼氣的分離分成兩個階段。底部一個處於極端的高負荷,上部一個處於低負荷。其基本構造如圖所示。
  • 國際厭氧生物技術領域的Lettinga:UASB之父的厭氧傳奇
    北極星水處理網訊:Gatze Lettinga教授,UASB技術之父,上流式厭氧汙泥床反應器技術的發明者,國際厭氧生物技術領域的知名學者,亦是美國「泰勒環境獎」(素有「環境科學諾貝爾獎」之稱)、第二屆新加坡李光耀水獎獲得者。他研發的UASB技術,不僅在70年代末掀起了世界厭氧技術的第二次進化高潮,時至今日,該項技術依然是厭氧汙水處理技術的核心。
  • 升流式厭氧氨氧化流化床反應器脫氮效能研究
    根據厭氧氨氧化汙泥形態的不同,可分為以絮體為主、以生物膜為主和以顆粒為主3種工藝形式;其中,以生物膜為主的厭氧氨氧化工藝因穩定、高效的脫氮性能而備受關注,其核心技術是藉助填料富集、長期持有厭氧氨氧化細菌,有效提升反應器內厭氧氨氧化菌的豐度和反應器的脫氮效能。基於移動床生物膜反應器(MBBR)開發的厭氧氨氧化技術已有成功的應用案例。
  • 水解酸化池與厭氧反應器區別,不只是一半那麼簡單!
    產甲烷細菌的代謝速率一般較慢,對於溶解性有機物厭氧消化過程,產甲烷階段是整個厭氧消化工藝的限速。   二、水解(酸化)池與厭氧反應器的區別   從原理上講,水解(酸化)是厭氧消化過程的第一、二兩個階段但水解(酸化)工藝和厭氧消化追求的目標不同,因此是截然不同的處理方法。
  • 厭氧膜生物反應器處理高濃度有機廢水的研究
    [摘 要]目前厭氧膜生物處理技術被認為是處理高濃度有機廢水的研究熱點之一,它結合了厭氧生物處理與膜過濾系統,從而具有運營成本低、易於管理控制及剩餘汙泥產率少等優點。但是,也面臨著諸如鹽度積聚,抑制物質和膜汙染等挑戰。本文綜述了厭氧膜生物反應器的基本原理和構造以及相關的影響因素,為高濃度有機廢水的處理提供相關建議。
  • 關於IC、UASB厭氧反應器的調試經驗總結!
    關於IC、UASB厭氧反應器的調試經驗總結!北極星水處理網訊:關於IC、UASB厭氧反應器的調試有哪些經驗值得借鑑?一、厭氧反應器啟動準備工作包含內容概述1、必須保證施工出來的厭氧反應器是嚴格按照設計圖紙的要求按質按量完工,不存在漏項、缺項、不到位的地方等,這在接種汙泥之前要必須經過反覆檢查確認。當然,前提是設計者設計的厭氧反應器必須是成熟的。
  • 關於UASB厭氧反應器的22個經典問答!
    我可以肯定地說:硫酸根的影響有時是很大的,大到導致厭氧UASB失敗。13、公司的處理設施即將運行,UASB池厭氧菌也準備購置和培養,請問培養這一段時間應該注意什麼問題,汙水濃度控制多少適宜?答:哈工大的一位博士問過我這個問題,記的我當時的回答:像對待剛剛出生嬰兒一樣對待你的UASB,這是大家應該注意的。你是專家,UASB的文章你可能看過成百上千篇,細節盡知。
  • 厭氧生物處理機理研究厭氧反應四個階段
    北極星水處理網訊:厭氧生物處理技術在水處理行業中一直都受到環保工作者們的青睞,由於其具有良好的去除效果,更高的反應速率和對毒性物質更好的適應,更重要的是由於其相對好氧生物處理廢水來說不需要為氧的傳遞提供大量的能耗,使得厭氧生物處理在水處理行業中應用十分廣泛。