過孔的寄生電容和電感

2021-02-15 至秦電子
一、過孔的寄生電容和電感

過孔本身存在著寄生的雜散電容,如果已知過孔在鋪地層上的阻焊區直徑為D2,過孔焊盤的直徑為D1,PCB板的厚度為T,板基材介電常數為ε,則過孔的寄生電容大小近似於:

C=1.41εTD1/(D2-D1)

過孔的寄生電容會給電路造成的主要影響是延長了信號的上升時間,降低了電路的速度。舉例來說,對於一塊厚度為50Mil的PCB板,如果使用的過孔焊盤直徑為20Mil(鑽孔直徑為10Mils),阻焊區直徑為40Mil,則我們可以通過上面的公式近似算出過孔的寄生電容大致是:

C=1.41x4.4x0.050x0.020/(0.040-0.020)=0.31pF

這部分電容引起的上升時間變化量大致為:

T10-90=2.2C(Z0/2)=2.2x0.31x(50/2)=17.05ps

從這些數值可以看出,儘管單個過孔的寄生電容引起的上升延變緩的效用不是很明顯,但是如果走線中多次使用過孔進行層間的切換,就會用到多個過孔,設計時就要慎重考慮。實際設計中可以通過增大過孔和鋪銅區的距離(Anti-pad)或者減小焊盤的直徑來減小寄生電容。

過孔存在寄生電容的同時也存在著寄生電感,在高速數字電路的設計中,過孔的寄生電感帶來的危害往往大於寄生電容的影響。它的寄生串聯電感會削弱旁路電容的貢獻,減弱整個電源系統的濾波效用。我們可以用下面的經驗公式來簡單地計算一個過孔近似的寄生電感:

L=5.08h[ln(4h/d)+1]

其中L指過孔的電感,h是過孔的長度,d是中心鑽孔的直徑。從式中可以看出,過孔的直徑對電感的影響較小,而對電感影響最大的是過孔的長度。仍然採用上面的例子,可以計算出過孔的電感為:

L=5.08x0.050[ln(4x0.050/0.010)+1]=1.015nH

如果信號的上升時間是1ns,那麼其等效阻抗大小為:XL=πL/T10-90=3.19Ω。這樣的阻抗在有高頻電流的通過已經不能夠被忽略,特別要注意,旁路電容在連接電源層和地層的時候需要通過兩個過孔,這樣過孔的寄生電感就會成倍增加。

二、如何使用過孔

通過上面對過孔寄生特性的分析,我們可以看到,在高速PCB設計中,看似簡單的過孔往往也會給電路的設計帶來很大的負面效應。為了減小過孔的寄生效應帶來的不利影響,在設計中可以儘量做到:

1.從成本和信號質量兩方面考慮,選擇合理尺寸的過孔大小。必要時可以考慮使用不同尺寸的過孔,比如對於電源或地線的過孔,可以考慮使用較大尺寸,以減小阻抗,而對於信號走線,則可以使用較小的過孔。當然隨著過孔尺寸減小,相應的成本也會增加。

2.上面討論的兩個公式可以得出,使用較薄的PCB板有利於減小過孔的兩種寄生參數。

3.PCB板上的信號走線儘量不換層,也就是說儘量不要使用不必要的過孔。

4.電源和地的管腳要就近打過孔,過孔和管腳之間的引線越短越好。可以考慮並聯打多個過孔,以減少等效電感。

5.在信號換層的過孔附近放置一些接地的過孔,以便為信號提供最近的迴路。甚至可以在PCB板上放置一些多餘的接地過孔。

6.對於密度較高的高速PCB板,可以考慮使用微型過孔。

相關焦點

  • 多層電路板中旁路電容的寄生串聯電感
    打開APP 多層電路板中旁路電容的寄生串聯電感 發表於 2019-08-08 10:28:47 您可以估算具有固態電源和接地層的多層電路板中旁路電容的寄生串聯電感。
  • PCB布局的DC電阻,寄生電容和寄生電感
    PCB布局的DC電阻,寄生電容和寄生電感 上海韜放電子 發表於 2020-12-31 12:01:41 許多設計人員習慣於根據電路模型來思考系統行為。
  • 乾貨| PCB設計中的過孔知識
    在普通PCB 設計中,過孔的寄生電容和寄生電感對PCB設計的影響較小,對1-,在頻率低於1GHz時,過孔能起到一個很好的連接作用,其寄生電容、電感可以忽略。
  • PCB布局時去耦電容擺放經驗分享
    通常晶片在設計的時候就考慮到了電源和地引腳的排列位置,一般都是均勻分布在晶片的四個邊上的。因此,電壓擾動在晶片的四周都存在,去耦也必須對整個晶片所在區域均勻去耦。如果把上圖中的680pF電容都放在晶片的上部,由於存在去耦半徑問題,那麼就不能對晶片下部的電壓擾動很好的去耦。 電容的安裝 在安裝電容時,要從焊盤拉出一小段引出線,然後通過過孔和電源平面連接,接地端也是同樣。
  • PCB布局時去耦電容的擺放,你造嗎?
    電容的安裝 在安裝電容時,要從焊盤拉出一小段引出線,然後通過過孔和電源平面連接,接地端也是同樣。這樣流經電容的電流迴路為:電源平面-》過孔-》引出線-》焊盤-》電容-》焊盤-》引出線-》過孔-》地平面,圖2直觀的顯示了電流的回流路徑。
  • 什麼是寄生電容?寄生電容有什麼危害?
    寄生的含義就是本來沒有在那個地方設計電容,但由於布線之間總是有互容,互容就好像是寄生在布線之間的一樣,所以叫寄生電容,又稱雜散電容。寄生電容本身不是電容,根據電容的原理我們可以知道,電容是由兩個極板和絕緣介質構成的,那麼寄生電容是無法避免的。比如一個電路有很多電線,電線與電線之間形成的電容叫做寄生電容。
  • 從儲能、阻抗兩種不同視角解析電容去耦原理
    充分理解電容的自諧振頻率和安裝諧振頻率非常重要,在計算系統參數時,實際使用的是安裝諧振頻率,而不是自諧振頻率,因為我們關注的是電容安裝到電路板上之後的表現。  電容在電路板上的安裝通常包括一小段從焊盤拉出的引出線,兩個或更多的過孔。我們知道,不論引線還是過孔都存在寄生電感。寄生電感是我們主要關注的重要參數,因為它對電容的特性影響最大。
  • 去耦電容的選擇、容值計算和pcb布局布線詳解
    通常晶片在設計的時候就考慮到了電源和地引腳的排列位置,一般都 是均勻分布在晶片的四個邊上的。因此,電壓擾動在晶片的四周都存在,去耦也必須對整個晶片所在區域均勻去耦。   電容的安裝   在安裝電容時,要從焊盤拉出一小段引出線,然後通過過孔和電源平面連接,接地端也是同樣。放置過孔的基本原則就是讓這一環路面積最小,進而使總的寄 生電感最小。圖16顯示了幾種過孔放置方法。
  • 電感和電容的計算
    我們把這種電流與線圈的相互作用關係稱其為電的感抗,也就是電感。電容(或電容量, Capacitance)指的是在給定電位差下的電荷儲藏量。功率計算公式:P=1/2 * C * V2 * F電感功率計算公式:P=1/2 * L * I2 * F電容上攜帶的能量(焦耳),是二分之一乘以電容量(法拉)再乘以電容電壓(伏特)的平方。
  • 深入晶片內部,理解去耦電容的作用
    放置在有源器件傍的高頻濾波電容的作用有兩個,其一是濾除沿電源傳導過來的高頻幹擾,其二是及時補充器件高速工作時所需的尖峰電流。所以電容的放置位置是需要考慮的。實際的電容由於存在寄生參數,可等效為串聯在電容上的電阻和電感,將其稱為等效串聯電阻(ESR)和等效串聯電感(ESL)。這樣,實際的電容就是一個串聯諧振電路,其諧振頻率為:
  • PCB布局時如何擺放及安裝去耦電容
    放置在有源器件傍的高頻濾波電容的作用有兩個,其一是濾除沿電源傳導過來的高頻幹擾,其二是及時補充器件高速工作時所需的尖峰電流。所以電容的放置位置是需要考慮的。實際的電容由於存在寄生參數,可等效為串聯在電容上的電阻和電感,將其稱為等效串聯電阻(ESR)和等效串聯電感(ESL)。
  • PCB設計時,去耦電容該怎麼放?
    電容的安裝在安裝電容時,要從焊盤拉出一小段引出線,然後通過過孔和電源平面連接,接地端也是同樣。這樣流經電容的電流迴路為:電源平面→過孔→引出線→焊盤→電容→焊盤→引出線→過孔→地平面。第一種方法從焊盤引出很長的引出線然後連接過孔,這會引入很大的寄生電感,一定要避免這樣做,這是最糟糕的安裝方式。
  • 對比電容理解電感
    基礎元器件裡面,電阻接觸的比較早,也比較貼近實際,所以比較好理解,電容因為經常用,所以也有些概念,但對於電感,絕大多數人沒有概念,這樣就阻\\\\\\\\\\\\\\\\n礙了對模擬電路深入理解,對於模擬電路,尤其是幹擾方面,最大的幹擾源往往是電感引起的,所以理解電感對於降低幹擾,提高系統可靠性有很大的幫助。
  • 電阻、電容和電感的實際等效模型
    掌握了預備知識,我們再來看電阻、電容和電感的實際等效模型。理想的電阻、電容和電感就是如下的這樣子,在實際中並不存在,電阻裡面會有寄生電容和寄生電感在,在電容裡面會有寄生電阻和寄生電感的存在,在電感裡面有寄生電阻和寄生電容。
  • 電巢學堂:詳解射頻電路中的電阻,電容和電感
    電阻,電容和電感是電子線路中最常用的元器件,在低頻電子線路或者直流電路中,這些元器件的特性很一致。但是在射頻電路中又會是什麼情況呢?今天我們就雷振亞老師的《微波工程導論》一書的介紹,繼續學習射頻電路基礎中的基礎。
  • 測量電容或電感的電路
    工程師們經常要使用信號發生器和函數發生器,還有頻率計與示波器,但他們可能沒有電容表或電感表。通過採用圖1的測試設置,就可以用一臺函數發生器、一塊萬用表、一個頻率計和一臺示波器測量電容或電感。  用此設置測量兩個信號的波幅。然後,無需測量相位角就可以計算出電容或電感。
  • 單片微波集成電路(MMIC)設計中的電感、電阻和過孔仿真模型
    該模型由金屬繞線的初級電感(L主要)組成,串聯電阻(R)代表從金屬繞線到接地平面之間的損耗,電容(C1和C2)和一個並聯電容(C)模擬繞線之間的電容。螺旋電感器實際上更像是分布式元件,如果電感器的輸入和輸出之間僅存在相對較小的相位變化,則可以僅使用單個反饋電容這種代表性模型。