薄膜表面形貌的相場方法模擬

2021-02-24 中國物理學會期刊網

[1] JOHN V. Introduction to surface and thin film processes[M]. Cambridge: Cambridge University Press, 2000.

[2] ALBERTO P, VILLAIN J. Physics of crystal growth[M]. Cambridge: Cambridge University Press, 1998.

[3] OHRING M. Materials Science of Thin Films (2nd ed.)[M]. Boston: Academic Press, 2001.

[4] MARTIN L W, CHU Y H, RAMESH R. Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films[J]. Materials Science and Engineering R, 2010, 68: 89.

[5] BRUNNER K. Si/Ge nanostructures[J]. Reports on Progress in Physics, 2002, 65: 27.

[6] STANGL J, HOLY V, BAUER G. Structural properties of self-organized semiconductor nanostructures[J]. Reviews of Modern Physics, 2004, 76: 725.

[7] CHEN L Q. Phase-field models for microstructure evolution[J]. Annual Review of Materials Research, 2002, 32: 113.

[8] STEINBACH I. Phase-field models in materials science[J]. Modelling and Simulation in Materials Science and Engineering, 2009, 17: 073001.

[9] SINGER-LOGINOVA I, SINGER H M. The phase field technique for modeling multiphase materials[J]. Reports on Progress in Physics, 2008, 71: 106501.

[10] WANG Y, LI J. Phase field modeling of defects and deformation[J]. Acta Materialia 2010, 58: 1212.

[11] CHEN L Q. Phase-field method of phase transitions/domain structures in ferroelectric thin films: A review[J]. Journal of the American Ceramic Society, 2008, 91(6): 1835.

[12] 陳龍慶. 相場模擬與材料基因組計劃[J]. 科學通報, 2013, 58:3638-3641.

CHEN L Q. Phase-field method and materials genome initiative(MGI)[J].Chin Sci Bull. 2013, 58: 3638-3641. (in Chinese)

[13] 方鵬均,劉芯宇,張雷,等. 邊界熱通量作用下枝晶生長相場模型的有限元法模擬[J].功能材料,2014, 45(18): 18042-18046.

FANG P, LIU X, ZHANG L, et al.Phase field simulation of dendritic growth with boundary heat flux by finite element method[J].Journal of Functional Materials,2014, 45(18): 18042-18046.(in Chinese)

[14] 王智平,王寶成,肖榮振, 等. Si-Ni合金中小晶面枝晶生長的相場法模擬[J].功能材料,2014, 45(18): 18042-18046.

WANG Z, WANG B, XIAO R, et al.Phase-field method simulation of faceted dendrite growth in Si-Ni alloy[J].Journal of Functional Materials,2014, 45(18): 18042-18046. (in Chinese)

[15] 王棟, 王雲志, 李巨. 鐵性智能材料的計算機模擬進展[J]. 中國材料進展, 2012, 31(3): 8-14.

WANG D, WANG Y, LI J. Progress in Computer Simulations of Ferroic Smart Materials[J]. Materials China, 2012, 31(3): 8-14. (in Chinese)

[16] 王傑, 李欣凱, 劉暢, 等. 材料微結構演化的相場模擬[J]. 固體力學學報, 2016, 37(1): 1-33.

WANG J, LI X, LIU C, et al. Phase Field Simulations of Microstructure Evolution[J]. Chinese Journal of Solid Mechanics, 2016, 37(1): 1-33. (in Chinese)

[17] 王冠,翁燕華,吳平平. 相場法模擬GaAs襯底上InGaAs異質結表面形貌[J]. 材料導報2018,32(z1):547-552.

WANG G, WENG Y, WU P. Phase field simulation on the morphology of InGaAs heterostructure on GaAs substrate[J]. Materials Review, 2018, 32(z1): 547-552. (in Chinese)

[18] PROVATAS N, ELDER K. Phase-field methods in materials science and engineering[M]. Wiley-VCH Verlag GmbH & Co, 2010.

[19] BINER S B. Programming phase-field modeling[M]. Springer International Publishing, 2017.

[20] 徐慢, 夏冬林, 楊晟, 等.薄膜太陽能電池[J].材料導報, 2006, 20(9): 109-111.

XU M, XIA D, YANG S, et al.Thin film solar cells[J].Materials Review,2006, 20(9): 109-111.(in Chinese)

[21] 羅子江,周勳,楊再榮, 等.InGaAs/GaAs異質薄膜MBE生長研究[J].功能材料, 2011, 42(5): 846-849.

LUO Z, ZHOU X, YANG Z, et al. The MBE growth research on InGaAs/GaAs heterofilms[J]. Journal of Functional Materials, 2011, 42(5): 846-849. (in Chinese)

[22] ARTHUR J R. Molecular beam epitaxy[J]. Surface Science, 2002, 500:189.

[23] PATRICK MCCRAY W. MBE deserves a place in the history books[J]. Nature Nanotechnology, 2007, 2: 259.

[24] BAUER E. Phanomenologische theorie der Kristallabscheidung an oberflachen. I[J]. Zeitschrift fur Kristallographie, 1958, 110: 372.

[25] STRANSKI I N, KRASTANOW L. Zur Theorie der orientierten Ausscheidung von Ionenkristallen aufeinander[J]. Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse IIb. Akademie der Wissenschaften Wien. 1938, 146: 797.

[26] MATTHEWS J W, BLAKESLEE A E. Defects in epitaxial multilayers-I: Misfit Dislocations[J]. Journal of Crystal Growth. 1974, 27: 118.

[27] PEOPLE R, BEAN J C. Calculation of crytical layer thickness versus lattice mismatch for GexSi1-x/Si Strained-Layer heterostructures[J]. Applied Physics Letters, 1985, 47: 322.

[28] SPECK S, POMPE W. Domain configurations due to multiple misfit relaxation mechanisms in epitaxial ferroelectric thin films. I. Theory[J]. Journal of Applied Physics,1994, 76: 466.

[29] MAREE P M J, BARBOUR J C, VAN DER VEEN J F, et al. Generation of misfit dislocations in semiconductors[J]. Journal of Applied Physics,1987, 62: 4413.

[30] SHENG G, HU J M, ZHANG J X, et al. Phase-field simulations of thickness-dependent domain stability in PbTiO3 thin films[J]. Acta Materialia, 2012, 60: 3296.

[31] SCHLOM D G, CHEN L Q, PAN X Q, et al. A thin film approach to engineering functionality into oxides[J]. Journal of the American Ceramic Society, 2008, 91(8): 2429.

[32] BEAN J C, FELDMAN L C, FIORY A T, et al. GexSi1-x/Si strained‐layer superlattice grown by molecular beam epitaxy[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1984, 2: 436.

[33] HOUGHTON D C, GIBBINGS C J, TUPPEN C G, et al. Equilibrium critical thickness for Si1-xGex strained layers on (100) Si[J]. Applied Physics Letters, 1990, 56, 460.

[34] ELMAN B, KOTELES E S, MALMAN P, ET AL. In situ measurements of critical layer thickness and optical studies of InGaAs quantum wells grown on GaAs substrates[J]. Applied Physics Letters, 1989, 55, 1659.

[35] AYERS J E. Heteroepitaxy of semiconductors: Theory, Growth, and Characterization[M]. CRC Press, 2017.

[36] ASARO R J, et al. Interface morphology development during stress corrosion cracking: Part I. Via surface diffusion[J]. Metallurgical Transactions, 1972, 3: 1789.

[37] GRINFELD M A. Instability of the equilibrium of a nonhydrostatically stressed body and a melt Soviet physics[J]. Doklady, 1986, 31: 831.

[38] VENABLES J A, SPILLER G D T, HANBUCKEN M. Nucleation and growth of thin films[J]. Reports on Progress in Physics, 1984, 47(4): 399.

[39] SROLOVITZ D J. On the stability of surfaces of stressed solids[J]. Acta Metallurgica, 1989, 37: 621.

[40] GAO H J. Some general properties of stress-driven surface evolution in a heteroepitaxial thin film structure[J]. Journal of the Mechanics and Physics of Solids, 1994, 42: 741.

[41] BALIBAR S, ALLES H, PARSHIN A Y. The surface of helium crystals[J]. Reviews of Modern Physics, 2005, 77, 317.

[42] JESSON D E, CHEN K M, PENNYCOOK S J, et al. Mechanism of strain induced roughening and dislocation multiplication in SixGe1-x thin films[J]. Journal of Electronic Materials, 1997, 26: 1039.

[43] BERREHAR J, CAROLI C, LAPERSONNE-MEYER C, et al. Surface patterns on single-crystal films under uniaxial stress: Experimental evidence for Grined instability[J]. Physical Review B, 1992, 46: 13487.

[44] KUZNETSOV P V, PANIN V E, PETRAKOVA I V. Grinfeld instability in the formation of a tweed structure at the Al crystal surface under cyclic tension[J]. Physical Mesomechanics, 2010, 13: 70.

[45] GURURAJAN M P, LAHIRI A. Elastic stress effects on microstructural instabilities[J]. Journal of the Indian Institute of Science, 2016, 96(3): 199.

[46] KHACHATURYAN A G. Theory of Structural Transfomations in Solid[M]. New York: Wiley, 1983.

[47] TAKAKI T, HIROUCHI T, TOMITA Y. Phase-field study of interface energy effect on quantum dot morphology[J]. Journal of Crystal Growth, 2008, 310: 2248.

[48] CHEN L Q, SHEN J. Applications of semi-implicit Fourier-spectral method to phase field equations[J]. Computer Physics Communications, 1998, 108: 147.

[49] CHUANG S L. Physics of optoelectronics devices[M]. New York: Wiley, 1995.

[50] MARIAGER S O, LAURIDSEN S L, DOHN A, et al. High-resolution three-dimensional reciprocal-space mapping of InAs nanowires[J]. Journal of Applied Crystallography, 2009, 42: 369.

[51] YU Y M, LIU B G. Phase-field model of island growth in epitaxy[J]. Physical Review E, 2004, 69: 021601.

[52] RATZ A, RIBALTA A, VOIGT A. Surface evolution of elastically stressed films under deposition by a diffuse interface model[J]. Journal of Computational Physics, 2006, 214: 187.

[53] ARJMAND M, DENG J, SWAMINATHAN N, et al. Effects of confinements on morphology of InxGa1-xAs thin film grown on sub-micron patterned GaAs substrate: Elastoplastic phase field model[J]. Journal of Applied Physics, 2014, 116: 114313.

[54] PODMANICZKY F, TóTH G I, TEGZE G, et al. Phase-field crystal modeling of heteroepitaxy and exotic modes of crystal nucleation[J]. Journal of Crystal Growth, 2017, 457: 24.

[55] WANG Y U, JIN Y M, KHACHATURYAN A G. Phase field microelasticity modeling of surface instability of heteroepitaxial thin films[J]. Acta Materialia, 2004, 52: 81.

[56] SEOL D J, HU S Y, LIU Z K, et al. Phase-field modeling of stress-induced surface instabilities in heteroepitaxial thin films[J]. Journal of Applied Physics, 2005, 98: 044910.

[57] YU P, HU S Y, CHEN L Q, et al. An iterative-perturbation scheme for treating inhomogeneous elasticity in phase-field models[J]. Journal of Computational Physics, 2005, 208: 34.

[58] NI Y, HE L H, SOH A K. Three-dimensional phase field simulation for surface roughening of heteroepitaxi-al films with elastic anisotropy[J]. Journal of Crystal Growth. 2005, 284: 281.

[59] LIANG X D, NI Y, HE L H. Shape-dependent composition profile in epitaxial alloy quantum dots: A phase-field simulation[J]. Computational Materials Science, 2010, 48: 871

[60] 大澤裕樹, 山中晃徳, Willy Kurnia, など. 超微細塑性加工と自己組織化による規則配列した金ナノドットアレイの創製[J]. 日本機械學會論文集(C編),原著論文No.2010-JCR-0328

OSAWA H, YAMANAKA A, KURNIA W, et al. Fabrication of ordered gold nano dot array by nano plastic forming and self-assembly[J]. Transactions of the JSME (in Japanese), No.2010-JCR-0328

[61] ELDER K R, PROVATAS N, BERRY J, et al. Phase-field crystal modeling and classical density functional theory of freezing[J]. Physical Review B, 2007, 75: 064107.

[62] BOYNE A, DREGIA S A, WANG Y. Concurrent spinodal decomposition and surface roughening in thin solid films[J]. Applied Physics Letters, 2011, 99: 063111.

[63] BOYNE A, RAUSCHER M D, DREGIA S A, et al. Surface island formation with localized stresses[J]. Scripta Materialia, 2011, 64: 705.

[64] WANG L Y, LIU Z L, ZHUANG Z. Continuum modeling of surface roughening in heteroepitaxial structures based on phase field theory[J]. Computational Materials Science, 2017, 136: 109.

[65] WANG Y U, JIN Y M, KHACHATURYAN A G. Phase field microelasticity modeling of dislocation dynamics near free surface and in heteroepitaxial thin films[J]. Acta Materialia, 2003, 51: 4209.

[66] WANG Y U, JIN Y M, KHACHATURYAN A G. Mesoscale modelling of mobile crystal defects-dislocations, cracks and surface roughening: Phase field microelasticity approach[J]. Philosophical Magazine, 2005, 85: 261.

[67] WANG L Y, LIU Z L, ZHUANG Z. Developing micro-scale crystal plasticity model based on phase field theory for modeling dislocations in heteroepitaxial structures[J]. International Journal of Plasticity, 2016, 81: 267.

[68] HU S Y, CHEN L Q. Spinodal decomposition in a film with periodically distributed interfacial dislocations[J]. Acta Materialia, 2004, 52: 3069.

[69] YU P, HU S Y, CHEN L Q, et al. An iterative-perturbation scheme for treating inhomogeneous elasticity in phase-field models[J]. Journal of Computational Physics, 2005, 208: 34.

[70] HAATAJA M, MULLER J, RUTENBERG A D, et al. Dynamics of dislocations and surface instabilities in misfitting heteroepitaxial films[J]. Physical Review B, 2002: 035401.

[71] WU P P, GAO F L, ZHANG S G, et al. Surface morphology of GaAs/In0.3Ga0.7As in an elastic field of static point defects[J]. Chinese Physics Letters, 2014, 31(2): 026802.

[72] CHIRRANJEEVI B G, ABINANDANAN T A, GURURAJAN M P. A phase field study of morphological instabilities in multilayer thin films[J]. Acta Materialia, 2009, 57: 1060.

[73] ZAEEM M A, SINISA D J. Mesarovic morphological instabilities in thin films: Evolution maps[J]. Computational Materials Science, 2011, 50: 1030.

[74] WU P P, GAO F L, LI G Q. Effects of buffer layer thickness on the surface roughness of In0.3Ga0.7As thin films: A phase-field simulation[J]. Journal of Materials Research, 2013, 28(23).

[75] WU P P, WANG G. A phase-field model for multilayered heterostructure morphology[J]. Materials Science Forum. 2019, 944: 788-794.

[76] μ-pro package on Chen’s research group[EB/OL]. https://www.ems. psu.edu/~chen /index.html.[1] JOHN V. Introduction to surface and thin film processes[M]. Cambridge: Cambridge University Press, 2000.

[2] ALBERTO P, VILLAIN J. Physics of crystal growth[M]. Cambridge: Cambridge University Press, 1998.

[3] OHRING M. Materials Science of Thin Films (2nd ed.)[M]. Boston: Academic Press, 2001.

[4] MARTIN L W, CHU Y H, RAMESH R. Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films[J]. Materials Science and Engineering R, 2010, 68: 89.

[5] BRUNNER K. Si/Ge nanostructures[J]. Reports on Progress in Physics, 2002, 65: 27.

[6] STANGL J, HOLY V, BAUER G. Structural properties of self-organized semiconductor nanostructures[J]. Reviews of Modern Physics, 2004, 76: 725.

[7] CHEN L Q. Phase-field models for microstructure evolution[J]. Annual Review of Materials Research, 2002, 32: 113.

[8] STEINBACH I. Phase-field models in materials science[J]. Modelling and Simulation in Materials Science and Engineering, 2009, 17: 073001.

[9] SINGER-LOGINOVA I, SINGER H M. The phase field technique for modeling multiphase materials[J]. Reports on Progress in Physics, 2008, 71: 106501.

[10] WANG Y, LI J. Phase field modeling of defects and deformation[J]. Acta Materialia 2010, 58: 1212.

[11] CHEN L Q. Phase-field method of phase transitions/domain structures in ferroelectric thin films: A review[J]. Journal of the American Ceramic Society, 2008, 91(6): 1835.

[12] 陳龍慶. 相場模擬與材料基因組計劃[J]. 科學通報, 2013, 58:3638-3641.

CHEN L Q. Phase-field method and materials genome initiative(MGI)[J].Chin Sci Bull. 2013, 58: 3638-3641. (in Chinese)

[13] 方鵬均,劉芯宇,張雷,等. 邊界熱通量作用下枝晶生長相場模型的有限元法模擬[J].功能材料,2014, 45(18): 18042-18046.

FANG P, LIU X, ZHANG L, et al.Phase field simulation of dendritic growth with boundary heat flux by finite element method[J].Journal of Functional Materials,2014, 45(18): 18042-18046.(in Chinese)

[14] 王智平,王寶成,肖榮振, 等. Si-Ni合金中小晶面枝晶生長的相場法模擬[J].功能材料,2014, 45(18): 18042-18046.

WANG Z, WANG B, XIAO R, et al.Phase-field method simulation of faceted dendrite growth in Si-Ni alloy[J].Journal of Functional Materials,2014, 45(18): 18042-18046. (in Chinese)

[15] 王棟, 王雲志, 李巨. 鐵性智能材料的計算機模擬進展[J]. 中國材料進展, 2012, 31(3): 8-14.

WANG D, WANG Y, LI J. Progress in Computer Simulations of Ferroic Smart Materials[J]. Materials China, 2012, 31(3): 8-14. (in Chinese)

[16] 王傑, 李欣凱, 劉暢, 等. 材料微結構演化的相場模擬[J]. 固體力學學報, 2016, 37(1): 1-33.

WANG J, LI X, LIU C, et al. Phase Field Simulations of Microstructure Evolution[J]. Chinese Journal of Solid Mechanics, 2016, 37(1): 1-33. (in Chinese)

[17] 王冠,翁燕華,吳平平. 相場法模擬GaAs襯底上InGaAs異質結表面形貌[J]. 材料導報2018,32(z1):547-552.

WANG G, WENG Y, WU P. Phase field simulation on the morphology of InGaAs heterostructure on GaAs substrate[J]. Materials Review, 2018, 32(z1): 547-552. (in Chinese)

[18] PROVATAS N, ELDER K. Phase-field methods in materials science and engineering[M]. Wiley-VCH Verlag GmbH & Co, 2010.

[19] BINER S B. Programming phase-field modeling[M]. Springer International Publishing, 2017.

[20] 徐慢, 夏冬林, 楊晟, 等.薄膜太陽能電池[J].材料導報, 2006, 20(9): 109-111.

XU M, XIA D, YANG S, et al.Thin film solar cells[J].Materials Review,2006, 20(9): 109-111.(in Chinese)

[21] 羅子江,周勳,楊再榮, 等.InGaAs/GaAs異質薄膜MBE生長研究[J].功能材料, 2011, 42(5): 846-849.

LUO Z, ZHOU X, YANG Z, et al. The MBE growth research on InGaAs/GaAs heterofilms[J]. Journal of Functional Materials, 2011, 42(5): 846-849. (in Chinese)

[22] ARTHUR J R. Molecular beam epitaxy[J]. Surface Science, 2002, 500:189.

[23] PATRICK MCCRAY W. MBE deserves a place in the history books[J]. Nature Nanotechnology, 2007, 2: 259.

[24] BAUER E. Phanomenologische theorie der Kristallabscheidung an oberflachen. I[J]. Zeitschrift fur Kristallographie, 1958, 110: 372.

[25] STRANSKI I N, KRASTANOW L. Zur Theorie der orientierten Ausscheidung von Ionenkristallen aufeinander[J]. Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse IIb. Akademie der Wissenschaften Wien. 1938, 146: 797.

[26] MATTHEWS J W, BLAKESLEE A E. Defects in epitaxial multilayers-I: Misfit Dislocations[J]. Journal of Crystal Growth. 1974, 27: 118.

[27] PEOPLE R, BEAN J C. Calculation of crytical layer thickness versus lattice mismatch for GexSi1-x/Si Strained-Layer heterostructures[J]. Applied Physics Letters, 1985, 47: 322.

[28] SPECK S, POMPE W. Domain configurations due to multiple misfit relaxation mechanisms in epitaxial ferroelectric thin films. I. Theory[J]. Journal of Applied Physics,1994, 76: 466.

[29] MAREE P M J, BARBOUR J C, VAN DER VEEN J F, et al. Generation of misfit dislocations in semiconductors[J]. Journal of Applied Physics,1987, 62: 4413.

[30] SHENG G, HU J M, ZHANG J X, et al. Phase-field simulations of thickness-dependent domain stability in PbTiO3 thin films[J]. Acta Materialia, 2012, 60: 3296.

[31] SCHLOM D G, CHEN L Q, PAN X Q, et al. A thin film approach to engineering functionality into oxides[J]. Journal of the American Ceramic Society, 2008, 91(8): 2429.

[32] BEAN J C, FELDMAN L C, FIORY A T, et al. GexSi1-x/Si strained‐layer superlattice grown by molecular beam epitaxy[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1984, 2: 436.

[33] HOUGHTON D C, GIBBINGS C J, TUPPEN C G, et al. Equilibrium critical thickness for Si1-xGex strained layers on (100) Si[J]. Applied Physics Letters, 1990, 56, 460.

[34] ELMAN B, KOTELES E S, MALMAN P, ET AL. In situ measurements of critical layer thickness and optical studies of InGaAs quantum wells grown on GaAs substrates[J]. Applied Physics Letters, 1989, 55, 1659.

[35] AYERS J E. Heteroepitaxy of semiconductors: Theory, Growth, and Characterization[M]. CRC Press, 2017.

[36] ASARO R J, et al. Interface morphology development during stress corrosion cracking: Part I. Via surface diffusion[J]. Metallurgical Transactions, 1972, 3: 1789.

[37] GRINFELD M A. Instability of the equilibrium of a nonhydrostatically stressed body and a melt Soviet physics[J]. Doklady, 1986, 31: 831.

[38] VENABLES J A, SPILLER G D T, HANBUCKEN M. Nucleation and growth of thin films[J]. Reports on Progress in Physics, 1984, 47(4): 399.

[39] SROLOVITZ D J. On the stability of surfaces of stressed solids[J]. Acta Metallurgica, 1989, 37: 621.

[40] GAO H J. Some general properties of stress-driven surface evolution in a heteroepitaxial thin film structure[J]. Journal of the Mechanics and Physics of Solids, 1994, 42: 741.

[41] BALIBAR S, ALLES H, PARSHIN A Y. The surface of helium crystals[J]. Reviews of Modern Physics, 2005, 77, 317.

[42] JESSON D E, CHEN K M, PENNYCOOK S J, et al. Mechanism of strain induced roughening and dislocation multiplication in SixGe1-x thin films[J]. Journal of Electronic Materials, 1997, 26: 1039.

[43] BERREHAR J, CAROLI C, LAPERSONNE-MEYER C, et al. Surface patterns on single-crystal films under uniaxial stress: Experimental evidence for Grined instability[J]. Physical Review B, 1992, 46: 13487.

[44] KUZNETSOV P V, PANIN V E, PETRAKOVA I V. Grinfeld instability in the formation of a tweed structure at the Al crystal surface under cyclic tension[J]. Physical Mesomechanics, 2010, 13: 70.

[45] GURURAJAN M P, LAHIRI A. Elastic stress effects on microstructural instabilities[J]. Journal of the Indian Institute of Science, 2016, 96(3): 199.

[46] KHACHATURYAN A G. Theory of Structural Transfomations in Solid[M]. New York: Wiley, 1983.

[47] TAKAKI T, HIROUCHI T, TOMITA Y. Phase-field study of interface energy effect on quantum dot morphology[J]. Journal of Crystal Growth, 2008, 310: 2248.

[48] CHEN L Q, SHEN J. Applications of semi-implicit Fourier-spectral method to phase field equations[J]. Computer Physics Communications, 1998, 108: 147.

[49] CHUANG S L. Physics of optoelectronics devices[M]. New York: Wiley, 1995.

[50] MARIAGER S O, LAURIDSEN S L, DOHN A, et al. High-resolution three-dimensional reciprocal-space mapping of InAs nanowires[J]. Journal of Applied Crystallography, 2009, 42: 369.

[51] YU Y M, LIU B G. Phase-field model of island growth in epitaxy[J]. Physical Review E, 2004, 69: 021601.

[52] RATZ A, RIBALTA A, VOIGT A. Surface evolution of elastically stressed films under deposition by a diffuse interface model[J]. Journal of Computational Physics, 2006, 214: 187.

[53] ARJMAND M, DENG J, SWAMINATHAN N, et al. Effects of confinements on morphology of InxGa1-xAs thin film grown on sub-micron patterned GaAs substrate: Elastoplastic phase field model[J]. Journal of Applied Physics, 2014, 116: 114313.

[54] PODMANICZKY F, TóTH G I, TEGZE G, et al. Phase-field crystal modeling of heteroepitaxy and exotic modes of crystal nucleation[J]. Journal of Crystal Growth, 2017, 457: 24.

[55] WANG Y U, JIN Y M, KHACHATURYAN A G. Phase field microelasticity modeling of surface instability of heteroepitaxial thin films[J]. Acta Materialia, 2004, 52: 81.

[56] SEOL D J, HU S Y, LIU Z K, et al. Phase-field modeling of stress-induced surface instabilities in heteroepitaxial thin films[J]. Journal of Applied Physics, 2005, 98: 044910.

[57] YU P, HU S Y, CHEN L Q, et al. An iterative-perturbation scheme for treating inhomogeneous elasticity in phase-field models[J]. Journal of Computational Physics, 2005, 208: 34.

[58] NI Y, HE L H, SOH A K. Three-dimensional phase field simulation for surface roughening of heteroepitaxi-al films with elastic anisotropy[J]. Journal of Crystal Growth. 2005, 284: 281.

[59] LIANG X D, NI Y, HE L H. Shape-dependent composition profile in epitaxial alloy quantum dots: A phase-field simulation[J]. Computational Materials Science, 2010, 48: 871

[60] 大澤裕樹, 山中晃徳, Willy Kurnia, など. 超微細塑性加工と自己組織化による規則配列した金ナノドットアレイの創製[J]. 日本機械學會論文集(C編),原著論文No.2010-JCR-0328

OSAWA H, YAMANAKA A, KURNIA W, et al. Fabrication of ordered gold nano dot array by nano plastic forming and self-assembly[J]. Transactions of the JSME (in Japanese), No.2010-JCR-0328

[61] ELDER K R, PROVATAS N, BERRY J, et al. Phase-field crystal modeling and classical density functional theory of freezing[J]. Physical Review B, 2007, 75: 064107.

[62] BOYNE A, DREGIA S A, WANG Y. Concurrent spinodal decomposition and surface roughening in thin solid films[J]. Applied Physics Letters, 2011, 99: 063111.

[63] BOYNE A, RAUSCHER M D, DREGIA S A, et al. Surface island formation with localized stresses[J]. Scripta Materialia, 2011, 64: 705.

[64] WANG L Y, LIU Z L, ZHUANG Z. Continuum modeling of surface roughening in heteroepitaxial structures based on phase field theory[J]. Computational Materials Science, 2017, 136: 109.

[65] WANG Y U, JIN Y M, KHACHATURYAN A G. Phase field microelasticity modeling of dislocation dynamics near free surface and in heteroepitaxial thin films[J]. Acta Materialia, 2003, 51: 4209.

[66] WANG Y U, JIN Y M, KHACHATURYAN A G. Mesoscale modelling of mobile crystal defects-dislocations, cracks and surface roughening: Phase field microelasticity approach[J]. Philosophical Magazine, 2005, 85: 261.

[67] WANG L Y, LIU Z L, ZHUANG Z. Developing micro-scale crystal plasticity model based on phase field theory for modeling dislocations in heteroepitaxial structures[J]. International Journal of Plasticity, 2016, 81: 267.

[68] HU S Y, CHEN L Q. Spinodal decomposition in a film with periodically distributed interfacial dislocations[J]. Acta Materialia, 2004, 52: 3069.

[69] YU P, HU S Y, CHEN L Q, et al. An iterative-perturbation scheme for treating inhomogeneous elasticity in phase-field models[J]. Journal of Computational Physics, 2005, 208: 34.

[70] HAATAJA M, MULLER J, RUTENBERG A D, et al. Dynamics of dislocations and surface instabilities in misfitting heteroepitaxial films[J]. Physical Review B, 2002: 035401.

[71] WU P P, GAO F L, ZHANG S G, et al. Surface morphology of GaAs/In0.3Ga0.7As in an elastic field of static point defects[J]. Chinese Physics Letters, 2014, 31(2): 026802.

[72] CHIRRANJEEVI B G, ABINANDANAN T A, GURURAJAN M P. A phase field study of morphological instabilities in multilayer thin films[J]. Acta Materialia, 2009, 57: 1060.

[73] ZAEEM M A, SINISA D J. Mesarovic morphological instabilities in thin films: Evolution maps[J]. Computational Materials Science, 2011, 50: 1030.

[74] WU P P, GAO F L, LI G Q. Effects of buffer layer thickness on the surface roughness of In0.3Ga0.7As thin films: A phase-field simulation[J]. Journal of Materials Research, 2013, 28(23).

[75] WU P P, WANG G. A phase-field model for multilayered heterostructure morphology[J]. Materials Science Forum. 2019, 944: 788-794.

[76] μ-pro package on Chen’s research group[EB/OL]. https://www.ems. psu.edu/~chen /index.html.

相關焦點

  • 開源相場助力能源材料新發現
    相較於第一性原理和分子動力學等計算材料界的「前輩」,相場模擬經過 20 餘年的「乘風破浪」的發展,雖然略顯小眾卻也風景這邊獨好。在相場模擬領域,「開源軟體」的現狀如何?未來又將如何發展?且聽本文作者為您慢慢道來。
  • 武漢理工大學沈忠慧研究員:相場模擬助力新型複合電介質的研究
    會議特邀了電氣絕緣領域的6位青年才俊,圍繞新型電介質材料的結構設計、性質和調控方法等分別做了精彩的學術報告並回答了現場聽眾的問題。在徵求會議演講專家的同意後,本號將把報告陸續分享給大家,請各位讀者持續關注。
  • 原來皮膚都是皺皺巴巴的 ——皮膚表面形貌
    皮膚表面形貌評估方法,大致可分為直接法和間接法兩大類,具體包括:4.1 直接目視法在臨床上有分級評估法,依據為皺紋等級標準照片,本章不做討論。另外有研究者對分級評估法提出更詳細的歸類,描述了鱗片狀剝落、粗糙度等皮膚分級。此類方法,主要缺點是人為主觀性較強,準確性和可重複性較難實現。
  • 綜述| 超平整低損耗的表面等離激元貴金屬薄膜
    傳統的金屬薄膜工藝難以製造均勻平整的貴金屬薄膜,導致無論幾何形貌還是光學參數都不近理想,嚴重限制了表面等離激元的發展和應用。近年,不同課題組提出了多種超平整金屬薄膜的製備方法,並將其應用在各色各樣的表面等離激元體系中。
  • 上海光機所在氧化銦錫薄膜雷射退火技術研究中獲進展
    近日,中國科學院上海光學精密機械研究所薄膜光學實驗室在1064nm準連續雷射退火氧化銦錫(ITO)薄膜研究中取得新進展,發現準連續雷射退火誘導ITO薄膜表面形貌的變化和溫升的依賴關係。相關成果發表在《光學材料快報》(Optical Materials Express)上。
  • 核—殼—表面複合球體的結晶態形貌控制機制獲揭示
    二維球面存在十二個呈二十面體排列的五度對稱拓撲缺陷;左2:非洲豬瘟病毒的二十面體衣殼結構;右1:正四面體小結晶體的三維堆積;右2:小結晶體四面體形成的三維二十面體結構復旦大學物理學系、應用表面物理國家重點實驗室譚鵬課題組與日本東京大學教授
  • 暨大:新方法!首次獲得一種高質量、大規模均勻鈣鈦礦薄膜
    編輯推薦:本文提出了一種氣相陰離子交換策略,利用氣體注入循環實現大規模無機鈣鈦礦的精確相位和帶隙控制,產生了一些薄膜形貌中從未報導過的鈣鈦礦,如氯化銫。該研究為無機鈣鈦礦提供了一種新的、通用的氣相陰離子交換方法。
  • 薄膜的結構與表面處理
    戳我進入社區:注塑和模具人的網上家園薄膜的結構與紙張結構一樣,薄膜表面處理一般都是印刷,表面印刷處理應注意那些問題
  • 復旦譚鵬課題組合作揭示核-殼-表面複合球體結晶態形貌控制機制
    近日,復旦大學物理學系、應用表面物理國家重點實驗室譚鵬課題組與日本東京大學教授Hajime Tanaka課題組合作,通過實驗與模擬結合,首次發現球面拓撲缺陷和球內結晶過程的動力學協同,形成核-殼-表面複合結晶體的形貌控制物理機制,
  • 復旦譚鵬團隊揭示核-殼-表面複合球體的結晶態形貌控制物理機制
    近日,復旦大學物理學系、應用表面物理國家重點實驗室譚鵬課題組與日本東京大學教授Hajime Tanaka課題組合作,通過實驗與模擬結合,首次發現球面拓撲缺陷和球內結晶過程的動力學協同,形成核-殼-表面複合結晶體的形貌控制物理機制,為小尺度自組織結構設計,提供了新的原理和思路。
  • 種植材料表面納米級形貌對細胞成骨效應的影響
    目前應用於臨床的種植體表面多具有微米級形貌,有利於細胞成骨向分化,但可能抑制成骨細胞增殖,影響種植體表面成骨速度。 納米級形貌是指至少在一個維度上尺寸為納米級水平的顯微形貌。採用酸蝕、陽極氧化、鹼熱、水熱、電子束刻蝕等方法可在材料表面獲得具有不同幾何形態的納米級形貌,常見者包括納米管、納米結節、納米球、納米凹坑、納米溝槽等。這些納米級形貌或單獨存在,或與微米級形貌形成複合結構,都會對組織細胞的生物學行為產生一定影響,多數學者認為其對材料表面成骨具有促進作用。本文綜述種植材料表面納米級形貌對細胞成骨效應的影響及其機制,以期為相關實驗研究及後期臨床轉化提供線索。
  • 北航程群峰《PNAS》:超高強度、耐水的MXene薄膜
    【MXene複合薄膜(SBM)的製備】如圖1所示,他們首先利用海藻酸鈉(SA)與MXene表面的官能團之間的氫鍵作用,製備了氫鍵作用的MXene薄膜(HBM),隨後對薄膜進行Ca2+交聯,得到了既有氫鍵作用又有離子鍵作用的MXene複合薄膜(SBM)。
  • 金屬所提出氧化石墨烯薄膜的化學還原新方法
    瀋陽材料科學國家(聯合)實驗室先進炭材料研究部對氧化石墨烯(GO)表面含氧官能團的組成、氫滷酸與GO反應原理以及滷素原子與碳原子之間成鍵時的鍵能等進行了系統分析,提出了利用氫碘酸、氫溴酸等滷化物還原GO的方法,實現了GO在較低的溫度下(≤100°C)的快速、高效還原,所得石墨烯的碳氧比可達12以上。
  • 小皺紋大變形-膜基系統多倍周期失穩形貌演化規律|SCPMA研究論文
    軟物質表面失穩現象,尤其是薄膜/基底系統表面起皺行為在自然界中普遍存在,例如皮膚皺紋、大腦溝回、風乾水果和花葉形貌等;現代工業中,柔性膜基系統失穩行為在表面自清潔、防汙損、形貌偽裝和微納米斑圖成形等領域具有廣泛應用。然而,如何定量預測並連續追蹤後屈曲非線性失穩模態中的多重分岔轉變仍是一項挑戰。
  • 北航程群峰《PNAS》:超高強度、耐水的MXene薄膜
    【MXene複合薄膜(SBM)的製備】  如圖1所示,他們首先利用海藻酸鈉(SA)與MXene表面的官能團之間的氫鍵作用,製備了氫鍵作用的MXene薄膜(HBM),隨後對薄膜進行Ca2+交聯,得到了既有氫鍵作用又有離子鍵作用的MXene複合薄膜(SBM)。
  • 中科院力學所魏宇傑研究員和華中科大楊榮貴教授合作:薄膜材料黏附強度和溫度的線性關係
    以二維材料、細胞膜為代表的薄膜材料在生物醫藥、先進材料以及工程領域有著廣泛的應用。薄膜材料的黏附行為將影響它們的性能。日前,中科院力學所、華中科技大學團隊在相關研究中取得重要進展。他們發現薄膜材料的黏附行為受到細胞膜表面形貌的影響,因此具有非常高的溫度敏感性。
  • 14大材料形貌測試,材料測試必看!!!
    應用:表徵斷口形貌、表面顯微結構、薄膜內部的顯微結構等。 照片:簡介:原子力顯微鏡(atomic force microscope)可以高分辨表徵各種樣品的表面形貌,可以分析與作用力相對應的各種表面性質,另外利用針尖可以操縱原子和進行納米加工
  • 一種通用鈣鈦礦多晶薄膜剝離技術
    近日,北京大學物理學院現代光學研究所朱瑞研究員、龔旗煌院士課題組與英國薩裡大學先進技術研究院張偉教授課題組再度聯合,首次建立了直接研究多晶鈣鈦礦薄膜「埋底」界面的系統研究方法,創新發展了多晶薄膜剝離技術與原位共聚焦螢光成像技術,揭示了鈣鈦礦底面的非輻射複合區域分布及來源;基於對鈣鈦礦底面的認知,進一步闡明了異質滷化銨上表面處理工藝實現鈣鈦礦薄膜底部界面優化改善的機理。
  • 有機太陽能電池的測試與表徵方法
    這種測試方法能夠得到材料的吸收範圍、吸收峰值、成分比例和聚合程度等信息。活性層對光的吸收效率越高,產生的激子數量就越多。但是光的吸收只是反應電池工作過程中光吸收產生激子這一階段,因此這種方法是研究光電器件的主要輔助手段。紫外可見光譜測試系統主要包括以下幾個部分:光源、單色器、樣品室、檢測器和電腦。