實驗法與實驗數據分析:T檢驗、方差分析或DID

2021-01-14 實證研究方法

      這一話題的主要目的是介紹實驗法,具體包括實驗設計及如何分析實驗數據以識別實驗效果。由於在文中畫了一些示意圖,還使用了一些圖片格式的公式,這些圖和公式導致不能很方便地用文字的方式上傳這一話題的內容。為了保證圖片和公式在文中的位置,我使用了圖片格式上傳全文。這可能會影響閱讀效果,還請見諒。

    這一話題的主要學習目標包括:

了解自變量、幹預變量(intervention variable)、因變量是什麼;

了解實驗法、實驗室實驗法、自然實驗法的概念;

區分實驗室實驗法與自然實驗法的異同;

了解單組後測設計、單組前後測設計、兩組後測設計、兩組前後測設計的關聯,並掌握相應的實驗數據分析方法;

了解多水平多因素設計方法及數據分析方法;

明確實驗法與實驗設計的關係;

了解隨機實驗設計及實現方法;

明確隨機實驗設計與準實驗設計的區別及聯繫。



相關焦點

  • t檢驗 方差分析 - CSDN
    一.T檢驗1.T檢驗分類T檢驗是通過比較不同數據的均值,研究兩組數據之間是否存在顯著差異。單總體檢驗:單總體t檢驗是檢驗一個樣本平均數與一個已知的總體平均數的差異是否顯著。當總體分布是正態分布,如總體標準差未知且樣本容量小於30,那麼樣本平均數與總體平均數的離差統計量呈t分布。
  • T檢驗、Z檢驗與ANOVA方差分析的應用比較
    關鍵來了:¢Z檢驗-方差已知的均值檢驗,考慮一個因素的影響,原假設H0:X1=X0(單樣本檢驗)或 H0:X1=X2(雙樣本檢驗)。¢T檢驗-方差未知的均值檢驗,考慮一個因素的影響,原假設X1=X0(單樣本檢驗)或H0:X1=X2¢ANOVA分析-分析不同因素的影響,用於兩個及兩個以上樣本均值差別的顯著性檢驗。
  • 「spss數據分析系列」方差分析
    上一課我們講的是t檢驗,t檢驗是用於2個類別的均值對比,如果是3分類以及以上的分類的均值對比,則採用方差分析。t檢驗是用的t分布來檢驗時候接受假設,方差分析則用的F分布,如下圖。方差分析的適用條件:1、個樣本的獨立性(指每個單元格內的數據相互獨立):這樣才能保證數據變異的可加性。2、正態性:單元格內的所有總體都是從一個正太總體來面抽出來,這個時候一般由於單元格數量比較少,所以沒法直接分析和觀察,這時候一般採用殘差分析來看。
  • T檢驗、方差分析、卡方分析傻傻分不清?
    不同的是,T檢驗是研究兩組數據之間是否存在差異,即自變量X的組別僅僅為2組;方差分析x的組別可以是2組或多組;方差分析和T檢驗的因變量Y的定量的;卡方檢驗是一種分析定性數據差異性的方法,是一種通過頻數進行檢驗的方法,檢驗觀察頻數和期望頻數之間的差別,其x的組別可以為2組或多組。
  • 快速處理數據分析之協方差分析
    前兩篇文章,我們對雙因素方差分析以及事後比較做了較為詳細的說明。與一般的單因素方差分析相比,雙因素甚至多因素方差分析,更多的被用在實驗研究中。前提條件(1) 協方差分析中,X是定類數據,Y是定量數據;協變量通常為定量數據;如果協變量是定類數據,可考慮將其納入X即自變量中,或者將協變量做虛擬變量處理。(2) 平行性檢驗:協方差分析有一個重要的假設即「平行性檢驗」。
  • 在回歸分析中t檢驗_回歸分析的t檢驗如何做 - CSDN
    (3)t分布(3)F分布三大分布的用途:卡方分布:常用於擬合優度檢驗t分布:       多用於比例的估計和檢驗,用於方差分析,協方差分布和回歸分析t分布:       在信息不足的情況下,只能用t分布,比如在整體方差不知道的情況下,對總體均值的估計和檢驗常用
  • 「spss數據分析系列」t檢驗
    一、t統計量及t檢驗本人介紹spss數據分析中的t檢驗,我們平時分析數據時經常對比均值,其中兩分類的均值對比採用的t檢驗,這裡強調一下的是兩分類的對比,其他還有獨立樣本t檢驗,配對t檢驗,我們在下面spss軟體部分再做說明
  • spss協方差分析
    什麼是協方差分析?協方差分析又稱「共變量分析」,是方差分析的引申和擴大。基本原理是將線性回歸與方差分析結合起來,調整各組平均數和 F 檢驗的實驗誤差項,檢驗兩個或多個調整平均數有無顯著差異,以便控制在實驗中影響實驗效應(因變量)而無法人為控制的協變量(與因變量有密切回歸關係的變量)在方差分析中的影響。好吧,聽不懂。簡單舉個例子來說:有一項研究,想知道男生和女生在跑步後的心率是否有差異。
  • 方差分析 (ANOVA)-29
    ▶充分了解ANOVA假設模型並知道如何驗證▶理解和應用多重對照法▶為學習更複雜的實驗設計打下堅實基礎個人學習意義▶用一個簡單的方法獲得有效了解過程知識的經驗▶知道如何設計並分析一個簡單的實驗▶提高從少量數據中獲得結論的能力▶進一步認識圖形工具對數據的應用
  • 【學習記·第31期】單因素、雙因素方差分析VS協方差分析
    方差分析能夠解決t檢驗、z檢驗所無法解決的問題,對統計學和行為科學的發展起了巨大促進作用,因此方差分析的關鍵步驟檢驗以Fisher的名字命名,以紀念其對統計學所作出的傑出貢獻。方差分析的基本假定 學習方差分析之前我們首先要了解方差分析的假定條件。當前提條件滿足時,自變量均方和誤差均方的比值是呈分布的。
  • 回歸分析t檢驗公式_線性回歸t檢驗公式 - CSDN
    線性回歸和方差分析的因變量是一樣的,都是連續型資料,     自變量就不一樣了,方差分析中是分類變量,而線性回歸中是連續型數據。【不同樣本的方差大致相等】,線性回歸中,因為我們無法對【x1,y1】這對數據做方差齊性分析,因為x1隻對應一個y1,但是真實總體上,一個x1值可以對應無數個y1的值,只是總體誰也不知。
  • 常用數據分析方法:方差分析及實現!
    方差分析是一種常用的數據分析方法,其目的是通過數據分析找出對該事物有顯著影響的因素、各因素之間的交互作用及顯著影響因素的最佳水平等。本文介紹了方差分析的基礎概念,詳細講解了單因素方差分析、雙因素方差分析的原理,並且給出了它們的python實踐代碼。
  • t檢驗的目的_單樣本t檢驗的目的 - CSDN
    為.128,表示方差齊性檢驗「沒有顯著差異」,即兩方差齊(Equal Variances),故下面t檢驗的結果表中要看第一排的數據,亦即方差齊的情況下的t檢驗的結果。 3、問:t檢驗和方差分析有何區別答:t檢驗適用於兩個變量均數間的差異檢驗,多於兩個變量間的均數比較要用方差分析。
  • 理解 t 檢驗與 F 檢驗的區別
    它主要用於:均數差別的顯著性檢驗、分離各有關因素並估計其對總變異的作用、分析因素間的交互作用、方差齊性(Equality of Variances)檢驗等情況。t檢驗過程,是對兩樣本均數(mean)差別的顯著性進行檢驗。惟t檢驗須知道兩個總體的方差(Variances)是否相等;t檢驗值的計算會因方差是否相等而有所不同。
  • SPSS之單因素方差分析ANOVA
    方差分析是對多個(兩個以上)處理平均數進行假設檢驗的方法。單因素是指該實驗中只有一個實驗因素,而單因素方差分析則是用來判斷這一實驗因素對各處理的優劣情況。簡單而言,如果實驗只有一種影響因素,但又有多個不同的處理水平,最後得到的數據就可以用單因素方差分析來分析數據。在方差分析的體系中,單因素方差分析,即F測驗通過對數據差異的分析來推斷兩個或多個樣本均數所代表的總體均數是否有差別,可用於檢測某項變異因素的效應或方差是否存在。F越大,說明組間方差是主要方差來源,處理的影響越顯著;F越小,越說明隨機方差是主要的方差來源,處理的影響越不顯著。
  • Kruskal-Wallis檢驗:單因素方差分析的非參數方法
    3組以上數據均值有無差異,通常我們使用單因素方差分析來完成,前提是3組數據分別來自正態分布總體,且方差齊次,對於正態分布來說,可以不用過於嚴苛
  • 方差分析常見問題匯總,你想知道的都在這裡
    本文以SPSSAU系統為例,針對方差分析的常見問題進行匯總說明。關於方差分析的分析思路及相關操作可閱讀連結文章:SPSSAU:全流程總結方差分析,只看這篇就夠了。①問題一:t檢驗與方差分析的區別?t檢驗只能進行兩組之間的比較,當分析項X組別超過兩組時,應使用方差分析。②問題二:方差分析是否需要滿足正態性?方差檢驗一般需要進行正態性檢驗,但方差檢驗對數據的正態性的有一定的耐受能力,只要數據近似正態即可接受。如果數據嚴重不正態,則可使用非參數檢驗。
  • 單因素方差分析超完整分析流程
    定類數據是指數字大小代表分類的數據(如1=男,2=女;1=第一組,2=第二組,3=第三組),定量數據是指數字大小具有比較意義(如量表題:非常不滿意,比較不滿意,中立,比較滿意,非常滿意)如果X為定類,Y為定量;且X分為兩組,比如男和女;此時也可使用t檢驗進行差異對比。
  • 用SPSS做方差分析趨勢檢驗
    我之前寫的所有方差分析的案例文章,均沒有提及趨勢檢驗,當我們的數據分析中有這樣的需求之時,自然而然的就會想到應該考察一下是不是存在某種趨勢。 比如:小孩子在成長過程中,隨著年齡的增長,ta的身高、坐高等測量數據會隨之變化,一直到發育成熟。
  • 管理心理學之統計(14)方差分析的定義和邏輯
    什麼是方差分析方差分析(ANOVA)是一個假設檢驗的過程,用於評估兩個或多個(總體)處理的平均數的差異,它與t檢驗的差異在於方差分析可以被用來比較兩個或更多的處理,為設計實驗與解釋結果提供了更大的靈活性。