中文摘要
體內大部分細胞都有生物鐘,但是節律維持是否依賴外周組織生物鐘,以及其對生理的影響尚不清楚。本次研究中,我們發現當特異性敲除成年小鼠肝實質細胞中核心生物鐘調控組分REV-ERBα和β時,會破壞一組肝臟基因的晝夜節律,同時也改變了脂肪從頭合成途徑的晝夜節律。此外,肝功能還受到非肝實質細胞的影響,並且特異性敲除肝實質細胞中的REV-ERBs重塑了肝內多種其他類型細胞的節律轉錄組和代謝組。最後,食物供應變化實驗證明了肝細胞內在生物鐘機制和攝食環境間的層級結構。總之,這些研究揭示了肝細胞生物鐘在營養信號的生理協調和控制節律性代謝的細胞間通訊中有著重要的作用。
由於地球的自轉與公轉,光照、溫度、溼度等均會發生周期性變化,自然界大多數的生命活動也呈現出與此一致的生物節律,包括晝夜節律、月節律和年節律。其中,晝夜節律內在的運行機制稱為晝夜時鐘,即生物鐘。在哺乳動物中,生物鐘在解剖水平由位於下丘腦視交叉上核的central clock(中樞生物鐘)與無數的peripheral clock(外周生物鐘)組成。中樞生物鐘通過視網膜光信號與環境同步,經神經、體液信號整合所有的外周生物鐘,並通過定期重置來保證生物體與環境之間、不同器官外周生物鐘之間的同步性。
生物鐘基因,指能夠使生物體產生晝夜節律,並控制其運轉的基因,是生物鐘的分子基礎,分為core clock genes(核心鍾基因)和clock-controlled genes(鍾控基因)。核心鍾基因主要有Clock、Bmal1、Per1/2/3和Cry1/2,鍾控基因主要有Clock的同源類似物Npas2、Rev-erbα、Hlf、Dbp、Tef、E4bp4、Stral3/Dec1、Rorα和Ck1ɛ等。在轉錄水平上,生物鐘蛋白可作為轉錄因子,通過E‐box、D‐box和RORE等順式作用元件直接控制鍾控基因的表達;可分為正性調控因子(如BMAL1、CLOCK)和負性調控因子(如PER、CRY)。其中,核心鍾基因、鍾控基因及其編碼的蛋白質通過轉錄‐翻譯事件相互銜接,組成生物鐘周期振蕩的自身調控反饋環路,從而調節生物體的生理、生化和行為的晝夜節律。
參考文獻:楊瑾,中華心血管病雜誌,2020(48),7:610-615.The hepatocyte clock and feeding control chronophysiology of multiple liver cell types
Abstract
Most cells of the body contain molecular clocks, but the requirement of peripheral clocks for rhythmicity, and their effects on physiology, are not well understood. Here we show that deletion of core clock components REV-ERBα and β in adult mouse hepatocytes disrupted diurnal rhythms of a subset of liver genes and altered the diurnal rhythm of de novo lipogenesis. Liver function is also influenced by non-hepatocytic cells, and the loss of hepatocyte REV-ERBs remodeled the rhythmic transcriptomes and metabolomes of multiple cell types within the liver. Finally, alteration of food availability demonstrated the hierarchy of the cell-intrinsic hepatocyte clock mechanism and the feeding environment. Together, these studies reveal previously unsuspected roles of the hepatocyte clock in the physiological coordination of nutritional signals and cell-cell communication controlling rhythmic metabolism.
原文連結:https://science.sciencemag.org/content/early/2020/07/29/science.aba8984.long
中文摘要
生命早期階段經歷的輕度線粒體應激可通過表觀遺傳學調控對生物體的壽命產生有益影響。本研究中,我們發現乙醯輔酶A(CoA)作為線粒體中重要的信號通路,在秀麗隱杆線蟲中能夠通過染色質重塑和NuRD(組蛋白脫乙醯基酶複合物)來調節衰老。在線粒體應激時,三羧酸循環受損,導致檸檬酸水平降低,乙醯CoA的生成也隨之減少,從而誘導NuRD和含同源結構域的轉錄因子DVE-1在細胞核中積累,最終降低組蛋白乙醯化,造成染色質重組。基於以上機制,代謝應激反應得以在生命早期建立並持續到成年期,通過轉錄調控延長壽命。此外,通過補充營養來恢復乙醯CoA的含量足以抵消染色質的變化並消除線粒體應激對壽命的影響。我們的發現揭示了代謝物介導的表觀遺產組調控機體衰老的分子機制。線粒體損傷與氧化應激的關係
線粒體是細胞內有氧呼吸的重要場所,其主要功能是為細胞提供各種功能活動所需要的ATP。此外,線粒體在維持細胞生存和完整性方面也發揮一系列作用,如調節細胞凋亡和壞死、活性物質的生成和清除、細胞信號傳導、鈣的吸收和釋放、控制細胞周期、生長和分化等。
在生物體內, 90%以上的氧分子在線粒體中被消耗,從生物氧化反應的分子過程看,氧作為一種必需物質具有雙重性;一方面,氧作為呼吸鏈的終端電子受體參與產生ATP的氧化磷酸化反應,是維持生命的重要能量代謝過程;另一方面,氧可通過一系列化學反應生成有害的氧自由基,造成細胞損傷並導致疾病和衰老。正常情況下,機體的調節機制使體內的氧化系統和抗氧化系統處於相對平衡狀態,體內處於相對自穩態,此時儘管也有自由基的產生,一方面自由基可作為信號分子介導多種生理過程,對機體穩態不可或缺,其含量會受到抗氧化系統的精確調控,使之保持穩定安全的濃度;另一方面,如果內源性和(或)外源性刺激使機體代謝異常,體內高活性分子如活性氧(ROS)產生過多,氧化程度超出氧化物的清除,會導致多種形式的組織損傷。體內ROS的生成包括外源性(環境)因素和內源性因素。外源性因素包括紫外線、可見光、電離輻射、化療和環境毒素等,內源性ROS主要由線粒體氧化呼吸鏈的活動產生。
NuRD mediates mitochondrial stress–induced longevity via chromatin remodeling in response to acetyl-CoA level
Abstract
Mild mitochondrial stress experienced early in life can have beneficial effects on the life span of organisms through epigenetic regulations. Here, we report that acetyl–coenzyme A (CoA) represents a critical mitochondrial signal to regulate aging through the chromatin remodeling and histone deacetylase complex (NuRD) in Caenorhabditis elegans. Upon mitochondrial stress, the impaired tricarboxylic acid cycle results in a decreased level of citrate, which accounts for reduced production of acetyl-CoA and consequently induces nuclear accumulation of the NuRD and a homeodomain-containing transcription factor DVE-1, thereby enabling decreased histone acetylation and chromatin reorganization. The metabolic stress response is thus established during early life and propagated into adulthood to allow transcriptional regulation for life-span extension. Furthermore, adding nutrients to restore acetyl-CoA production is sufficient to counteract the chromatin changes and diminish the longevity upon mitochondrial stress. Our findings uncover the molecular mechanism of the metabolite-mediated epigenome for the regulation of organismal aging.
原文連結:https://advances.sciencemag.org/content/6/31/eabb2529.full
中文摘要
已知CR(熱量限制)可以延長多個物種的壽命,但是其分子機制尚不清楚。通過核糖體印記測序技術,RNA-seq與基於微流體的單細胞分析,我們研究了GR(限制葡萄糖攝入)延長酵母複製壽命的機制。我們發現葡萄糖識別和胞內蛋氨酸調節之間存在對話機制:GR會下調蛋氨酸生物合成酶和轉運蛋白的轉錄和翻譯,導致細胞內蛋氨酸濃度降低;額外補充蛋氨酸可抵消GR延長壽命的功效。此外,能夠減少蛋氨酸合成或攝取的基因調控也可以延長壽命。這些結果表明,細胞內蛋氨酸的含量介導了各種營養物質和基因表達變化所導致的壽命改變,而葡萄糖-蛋氨酸之間的相互作用是協調營養物狀態和細胞翻譯/生長的基本機制。我們的結果還表明蛋白酶體是GR延長壽命的下遊效應器。
限制蛋氨酸除了延長壽命外,
對代謝的其他影響
近年來,肥胖的發病率逐漸增加,長期肥胖會導致胰島素抵抗。有研究表明,飲食中限制蛋氨酸在降低體重、抗炎、減輕氧化應激以及增加胰島素敏感性等方面均有顯著的效果。
與熱量限制和其他方法相比,限制蛋氨酸的優勢在於它只通過限制飲食中的蛋氨酸攝入量而非減少正常的飲食攝入來改善胰島素敏感性。在高脂飲食誘導肥胖小鼠中,改善胰島素敏感性分子機制是通過改善小鼠胰腺組織內質網應激和氧化還原狀態,進而起到保護胰腺和促進胰島素分泌的作用。富含蛋氨酸的常見食物
1.雞蛋清,雞胸脯肉,火雞和魚是蛋氨酸含量最高的常見食品。此外,金槍魚,白斑狗魚,北梭魚,鱈魚,黑線鱈和翻車魚每份的蛋氨酸含量都超過1200毫克。
2.綠葉蔬菜。海藻在所有蔬菜中的蛋氨酸含量最高。還包括南瓜葉,竹筍和芋頭葉等。3.堅果和種子類食物。芝麻籽,葵花籽,亞麻籽,腰果,開心果,巴西堅果和烤南瓜種子都含有蛋氨酸。4.豆類食物。如芸豆,白豆和黑豆都是含蛋氨酸的常見食品。1.Ables GP, et al. Annals of the New York Academy of Sciences, 2016,1363:68-79.2.Miller RA, et al. Aging Cell, 2005, 4(3): 119-125. 3.Ables GP, et al. Plos one, 2012, 7(12): e51357.4.羅婷玉,食品科學,2020,3:111-119.Life span extension by glucose restriction is abrogated by methionine supplementation: Cross-talk between glucose and methionine and implication of methionine as a key regulator of life span
發表單位:Department of Biochemistry and Biophysics, University of CaliforniaPI:Jiashun Zheng,一作:Ke ZouAbstract
Caloric restriction (CR) is known to extend life span across species; however, the molecular mechanisms are not well understood. We investigate the mechanism by which glucose restriction (GR) extends yeast replicative life span, by combining ribosome profiling and RNA-seq with microfluidic-based single-cell analysis. We discovered a cross-talk between glucose sensing and the regulation of intracellular methionine: GR down-regulated the transcription and translation of methionine biosynthetic enzymes and transporters, leading to a decreased intracellular methionine concentration; external supplementation of methionine cancels the life span extension by GR. Furthermore, genetic perturbations that decrease methionine synthesis/uptake extend life span. These observations suggest that intracellular methionine mediates the life span effects of various nutrient and genetic perturbations, and that the glucose-methionine cross-talk is a general mechanism for coordinating the nutrient status and the translation/growth of a cell. Our work also implicates proteasome as a downstream effector of the life span extension by GR.
原文連結:https://advances.sciencemag.org/content/6/32/eaba1306.ful
4.雌激素受體α通過調節Polg1和線粒體重塑來控制白色和棕色脂肪細胞的代謝
中文摘要
隨著年齡的增長,肥胖會加劇;儘管雌激素受體α(ERα)有預防肥胖的作用,但其中的分子機制仍知之甚少。本研究中,我們發現在700名芬蘭男性和100株近交小鼠(來自UCLA雜交小鼠多樣性平臺)中,脂肪組織中ESR1/Esr1的表達與肥胖呈負相關,而與參與線粒體代謝的基因和代謝健康標誌物呈正相關。為了確定ERα在脂肪中的抗肥胖作用,我們在小鼠的白色和棕色脂肪細胞中特異性敲除Esr1。在白色脂肪組織中,Esr1通過抑制E3泛素連接酶Parkin抑制線粒體的靶向清除來控制氧化代謝。脂肪組織特異性parkin敲除小鼠mtDNA含量升高,脂肪組織減少。在維持體溫的棕色脂肪中,Esr1為Drp1(動力蛋白相關蛋白1)介導的線粒體重塑和Ucp1(解耦聯蛋白1)介導的解耦聯呼吸生熱所必需。在雌性小鼠白色和棕色脂肪組織和體外培養的脂肪細胞中,Esr1敲除導致的線粒體功能障礙伴隨著mtDNA聚合酶γ亞基Polg1的表達量降低。在3T3L1脂肪細胞中,ERα結合Polg1啟動子來控制其表達,因此Polg1是ERα的靶基因。這些發現支持可利用ERα對於脂肪細胞線粒體功能的影響來作為抵抗肥胖和代謝功能障礙的策略。
Esr1(雌激素受體1,estrogen receptor 1)和Esr2(雌激素受體2,estrogen receptor 2)基因分別編碼ERα(雌激素受體α)和ERβ(雌激素受體β)。它們由雌激素激活並以二聚體方式相互作用。從功能上看,ERα和ERβ具有拮抗作用:ERα刺激細胞增殖,而ERβ具有抗增殖和抑瘤作用。
Esr1基因編碼的蛋白質ERα調控許多雌激素誘導基因的轉錄,這些基因在生長、代謝、性發育、妊娠和其他生殖功能中發揮作用,並在許多非生殖組織中表達。因此,Esr1基因變異可能增加患乳腺癌的潛在風險。多項研究報導,約55%的ER陽性轉移性乳腺癌患者篩查出Esr1基因突變。
雌激素作為一種重要的內源性甾體類激素,具有廣泛的生物活性,其可以通過與雌激素受體結合,對骨代謝以及脂代謝等多個方面都會產生影響。
1. 對骨代謝的影響
雌激素對骨的新陳代謝起重要的調節作用,既體現在影響破骨細胞的骨重吸收,又體現在影響成骨細胞的骨形成。具體來說,雌激素不僅可以通過直接調節破骨細胞影響破骨活動,同時還可通過減少成骨細胞的凋亡、調節核因子κB 活性及氧化應激反應來影響成骨細胞的形成及其活性,進一步影響了骨代謝的平衡。此外,如果機體雌激素缺乏,會導致了骨代謝中骨形成及骨吸收的失衡,最終會造成骨質疏鬆的發生。2. 對脂代謝的影響
雌激素在中樞能量調控及外周組織脂肪代謝調控中起重要作用,雌激素調節脂肪代謝的機制複雜,且對脂肪代謝的調控有組織差異,這可能與兩種雌激素受體的分布及功能有關。一方面,雌激素可影響機體瘦素水平及瘦素敏感度,雌激素缺乏條件下瘦素水平及瘦素敏感度下降。另一方面,雌激素可影響脂肪細胞分化,促進脂肪細胞脂解,抑制脂肪細胞脂質合成,從而減少脂肪在脂肪組織中的沉積。
參考文獻
Estrogen receptor α controls metabolism in white and brown adipocytes by regulating Polg1 and mitochondrial remodeling
發表單位:Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of CaliforniaPI:Andrea L. Hevener,一作:Zhenqi ZhouAbstract
Obesity is heightened during aging, and although the estrogen receptor α (ERα) has been implicated in the prevention of obesity, its molecular actions in adipocytes remain inadequately understood. Here, we show that adipose tissue ESR1/Esr1 expression inversely associated with adiposity and positively associated with genes involved in mitochondrial metabolism and markers of metabolic health in 700 Finnish men and 100 strains of inbred mice from the UCLA Hybrid Mouse Diversity Panel. To determine the anti-obesity actions of ERα in fat, we selectively deleted Esr1 from white and brown adipocytes in mice. In white adipose tissue, Esr1 controlled oxidative metabolism by restraining the targeted elimination of mitochondria via the E3 ubiquitin ligase parkin. mtDNA content was elevated, and adipose tissue mass was reduced in adipose-selective parkin knockout mice. In brown fat centrally involved in body temperature maintenance, Esr1 was requisite for both mitochondrial remodeling by dynamin-related protein 1 (Drp1) and uncoupled respiration thermogenesis by uncoupled protein 1 (Ucp1). In both white and brown fat of female mice and adipocytes in culture, mitochondrial dysfunction in the context of Esr1 deletion was paralleled by a reduction in the expression of the mtDNA polymerase γ subunit Polg1. We identified Polg1 as an ERα target gene by showing that ERα binds the Polg1 promoter to control its expression in 3T3L1 adipocytes. These findings support strategies leveraging ERα action on mitochondrial function in adipocytes to combat obesity and metabolic dysfunction.
原文連結:https://stm.sciencemag.org/content/12/555/eaax8096.short
φ(≧ω≦*)♪
喜歡我們嗎?點擊下方「閱讀原文」關注我們吧~
๑乛㉨乛๑ ↓
更多精彩內容,點擊下方「往期推薦」
長按識別二維碼
關注我們,精彩不斷
了解更多科研知識和進展