Leptin作用於中樞AGRP/POMC/BDNF神經元通路
1. 微生物產生的代謝物促進腸道中組蛋白去乙醯化酶3(HDAC3)的活性小編一句話:「全能」腸道微生物居然可以調節宿主表觀遺傳變化。中文摘要
對哺乳動物有益的共生微生物與其宿主的共同進化促進了宿主-微生物群共生關係的發展。表觀遺傳調控系統使哺乳動物細胞能夠整合環境信號,然而,尚不清楚共生微生物是如何通過多種信號精細地調控這些通路的。在本研究中,我們在腸道中發現了一種具有高度選擇性的調控通路,即微生物來源的肌醇磷酸鹽能夠調節組蛋白去乙醯化酶3 (HDAC3)的活性。我們意外地發現,儘管腸道中存在豐富的HDAC抑制劑(如丁酸鹽),但令人意外的是,與腸道無菌小鼠相比,重新補充腸道微生物的小鼠腸上皮細胞(IECs)中HDAC3活性顯著增加。進一步研究表明包括大腸桿菌在內的共生微生物通過代謝IP6(肌醇六磷酸)和產生IP3(肌醇三磷酸)刺激了HDAC的活性。使用肌醇三磷酸鹽處理腸道和餵食肌醇六磷酸鹽均能夠促進腸損傷後的修復。值得注意的是,IP3也能誘導來自患者的腸道類器官的生長,刺激HDAC3依賴的增殖,並緩解丁酸鹽對結腸細胞的生長抑制。總的來說,這些數據表明肌醇三磷酸是一種微生物來源的代謝物,可以激活哺乳動物組蛋白去乙醯化酶,促進腸上皮修復。因此,HDAC3能夠作為表觀遺傳感受器,響應來自共生微生物產生的各類代謝產物,並介導不同的宿主反應。
肌醇三磷酸(IP3)是細胞內一類重要的第二信使。一般來說,IP3可由細胞內激活的磷脂酶C催化質膜上的PIP2(磷脂醯肌醇-4,5-二磷酸)產生,通過作用於內質網,釋放Ca2+進入細胞質中,改變細胞內Ca2+濃度,調節下遊反應。而本研究則發現IP3可通過第二信使以外的方式調節腸道修復。
腸道微生物產生的IP3可直接激活腸上皮細胞中的HDAC3促進腸上皮細胞增殖。Microbiota-derived metabolite promotes HDAC3 activity in the gut
發表單位:Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center
PI:Theresa Alenghat,
一作:Shu-en Wu
Abstract
The coevolution of mammalian hosts and their beneficial commensal microbes has led to development of a symbiotic host-microbiota relationship. Epigenetic machinery permits mammalian cells to integrate environmental signals, however, how these pathways are finely tuned by diverse cues from commensal bacteria is not well understood. Here, we reveal a highly selective pathway through which microbiota-derived inositol phosphate regulates histone deacetylase 3 (HDAC3) activity in the intestine. Despite abundant HDAC inhibitors in the intestine such as butyrate, we unexpectedly found that HDAC3 activity was sharply increased in intestinal epithelial cells (IECs) of microbiota-replete mice compared to germ-free mice. This discordance was reconciled by finding that commensal bacteria, including E. coli, stimulated HDAC activity through metabolism of phytate and inositol trisphosphate production. Intestinal exposure to inositol trisphosphate and phytate ingestion both promoted recovery following intestinal damage. Remarkably, inositol trisphosphate also induced growth of patient-derived intestinal organoids, stimulated HDAC3-dependent proliferation, and countered butyrate inhibition of colonic growth. Collectively, these data reveal inositol trisphosphate as a microbiota-derived metabolite that activates a mammalian histone deacetylase to promote epithelial repair. Thus, HDAC3 represents a converging epigenetic sensor of distinct metabolites that calibrates host responses to diverse microbial signals.
原文連結:https://www.nature.com/articles/s41586-020-2604-2
小編一句話:新晉第二信使鈉離子,調控細胞適應缺氧。中文摘要
所有後生動物都依賴線粒體氧化磷酸化系統(OXPHOS)消耗氧氣產生能量。此外,氧化磷酸化可以消耗氧氣產生活性氧誘導細胞適應缺氧的情況,但是其確切機制目前仍不清楚。鈣離子作為第二信使被廣為人知,然而,在人們的認知中鈉離子的功能僅限於介導膜電位變化。本研究發現鈉離子可作為第二信使,通過調節線粒體內膜流動性,調控氧化磷酸化及活性氧產生。在急性缺氧時,線粒體複合物I構象改變,導致線粒體基質酸化,促使磷酸鈣沉澱釋放游離鈣離子。這同時激活了線粒體鈉/鈣離子交換器,促進鈉離子進入線粒體基質。鈉離子與磷脂分子相互作用,減少了線粒體內膜流動性以及游離泛醌(輔酶Q)在線粒體複合物II與III之間的遷移能力,但不影響線粒體超複合物內部的輔酶Q遷移。這導致在線粒體複合物III處產生了超氧化物。通過鈉/鈣離子交換器抑制鈉離子進入線粒體足以阻斷這一途徑,並抑制細胞對缺氧的適應性。這些結果表明鈉離子通過與磷脂分子相互作用調控氧化磷酸化及氧化還原信號,從而對細胞代謝產生重要影響。
(note:棕色脂肪中線粒體鈉/鈣離子交換體NCLX可以PKA依賴的方式促進鈣離子從線粒體排出,在維持產熱中起重要作用。具體內容請見我們往期代謝薦讀:(連結:Nat. Comm.六月七月代謝亮點)
大部分細胞都主要依賴氧化磷酸化產生能量,在此過程中,線粒體需要消耗大量氧氣。因此氧氣對需氧細胞的生存與代謝都至關重要。當氧氣濃度較低時,細胞會啟動一系列反應來適應缺氧狀態,以提高自己的生存能力。2019年的諾貝爾生理學獎和醫學獎頒發給了William G. Kaelin Jr等人,以表彰他們在「發現細胞如何感知和適應氧氣供應」方面所作的工作。他們發現細胞內存在低氧誘導因子HIF-1與低氧應答元件。在正常狀態下,HIF-1α會在雙加氧酶的作用下被羥基化,接著被泛素化而降解。而在缺氧時,細胞內氧氣含量下降,氧分子濃度較低使得HIF-1α無法被羥基化,因此在正常狀態下會被清除的HIF-1α無法降解,從而通過低氧應答元件促進細胞啟動一系列轉錄程序如表達EPO刺激紅細胞生成、表達VEGF促進新血管形成、表達糖酵解相關酶促進糖酵解供能等。在缺氧狀態下ROS(活性氧)水平升高對穩定HIF-1起重要作用,此外,ROS也能夠以獨立於HIF-1的方式介導細胞應對缺氧。然而,缺氧條件下促進ROS產生並誘導細胞進入缺氧適應狀態的確切機制仍不明確,本研究則闡明了缺氧早期誘導ROS產生的具體機制,發現了鈉離子可作為第二信使在缺氧狀態下誘導ROS產生,對細胞應對缺氧的機製做出了重要補充。
1. The Nobel Prize in Physiology or Medicine 2019, Retrieved October 7, 2019
2. Sena LA, et al . Mol Cell. 2012
Na+ controls hypoxic signalling by the mitochondrial respiratory chain
發表單位:Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP)
PI:Antonio Martínez-Ruiz,
一作:Pablo Hernansanz-Agustín
Abstract
All metazoans depend on the consumption of O2 by the mitochondrial oxidative phosphorylation system (OXPHOS) to produce energy. In addition, the OXPHOS uses O2 to produce reactive oxygen species that can drive cell adaptations, a phenomenon that occurs in hypoxia and whose precise mechanism remains unknown. Ca2+ is the best known ion that acts as a second messenger, yet the role ascribed to Na+ is to serve as a mere mediator of membrane potential. Here we show that Na+ acts as a second messenger that regulates OXPHOS function and the production of reactive oxygen species by modulating the fluidity of the inner mitochondrial membrane. A conformational shift in mitochondrial complex I during acute hypoxia drives acidification of the matrix and the release of free Ca2+ from calcium phosphate (CaP) precipitates. The concomitant activation of the mitochondrial Na+/Ca2+ exchanger promotes the import of Na+ into the matrix. Na+ interacts with phospholipids, reducing inner mitochondrial membrane fluidity and the mobility of free ubiquinone between complex II and complex III, but not inside supercomplexes. As a consequence, superoxide is produced at complex III. The inhibition of Na+ import through the Na+/Ca2+ exchanger is sufficient to block this pathway, preventing adaptation to hypoxia. These results reveal that Na+ controls OXPHOS function and redox signalling through an unexpected interaction with phospholipids, with profound consequences for cellular metabolism.
原文連結:https://www.nature.com/articles/s41586-020-2551-y
3. 葡萄糖代謝構起星形膠質細胞線粒體與大麻素效應間的橋梁小編一句話:星形膠質細胞通過糖代謝直接調控行為改變。中文摘要
星形膠質細胞從血液中吸收葡萄糖,為大腦提供進行神經元活動和行為反應所需的能量。反之,神經元也可以通過特定的神經遞質受體調控星形膠質細胞。然而,星形膠質細胞受體的激活是否可以通過直接調節細胞葡萄糖代謝,進而調控行為反應,尚不清楚。本研究發現,激活小鼠線粒體膜相關星形膠質1型大麻素受體(mtCB1)會在大腦中抑制葡萄糖代謝和乳酸的產生,導致神經元功能發生改變,進而損害小鼠在社交互動實驗中的行為反應。具體而言,星形膠質細胞mtCB1受體的激活抑制了線粒體複合物I亞基NDUFS4的磷酸化,從而降低了複合物I的穩定性和活性,導致星形膠質細胞產生的活性氧減少,並通過影響HIF1(低氧誘導因子1)途徑幹擾糖酵解過程的乳酸生成,最終導致小鼠神經元氧化還原應激及在社交互動實驗中行為反應受損。從遺傳和藥理學上修正上述途徑的各環節,均能消除大麻素處理對小鼠行為的影響。這些結果表明,mtCB1信號轉導可以直接調節星形膠質細胞葡萄糖代謝,進而精細調控小鼠的神經元活動和行為。
大麻中的有效活性成分就是大麻素,它通過激活大麻素受體(神經系統中主要是CB1)調節神經遞質的釋放,如多巴胺和GABA,來參與記憶、認知、運動控制等的調節。2016年Nature報導了吸食大麻導致的記憶損失與線粒體損傷相關。研究人員發現小鼠大麻素誘導的急性記憶損傷需要激活大腦中的海馬(大多數記憶加工發生的地方)線粒體膜CB1(mtCB1)。敲除小鼠中海馬mtCB1可以防止大麻素誘導的線粒體活動、突觸傳遞及記憶形成的損傷。mtCB1通過線粒體內G蛋白信號轉導調控線粒體呼吸鏈進而調控能量代謝來調節記憶過程。本文研究發現了大麻素通過降低星形膠質細胞中線粒體複合物NDUFS4亞基Ser173磷酸化使線粒體複合物1的結構失去穩定,抑制葡萄糖轉化為乳酸,進而引起社交行為障礙,這種機制同樣依賴於星形膠質細胞的mtCB1。
1. Hebert-Chatelain E et al . Nature. 2016
Glucose metabolism links astroglial mitochondria to cannabinoid effects
發表單位:University of Bordeaux
PI:Giovanni Marsicano,
一作:Daniel Jimenez-Blasco
Abstract
Astrocytes take up glucose from the bloodstream to provide energy to the brain, thereby allowing neuronal activity and behavioural responses. By contrast, astrocytes are under neuronal control through specific neurotransmitter receptors. However, whether the activation of astroglial receptors can directly regulate cellular glucose metabolism to eventually modulate behavioural responses is unclear. Here we show that activation of mouse astroglial type-1 cannabinoid receptors associated with mitochondrial membranes (mtCB1) hampers the metabolism of glucose and the production of lactate in the brain, resulting in altered neuronal functions and, in turn, impaired behavioural responses in social interaction assays. Specifically, activation of astroglial mtCB1 receptors reduces the phosphorylation of the mitochondrial complex I subunit NDUFS4, which decreases the stability and activity of complex I. This leads to a reduction in the generation of reactive oxygen species by astrocytes and affects the glycolytic production of lactate through the hypoxia-inducible factor 1 pathway, eventually resulting in neuronal redox stress and impairment of behavioural responses in social interaction assays. Genetic and pharmacological correction of each of these effects abolishes the effect of cannabinoid treatment on the observed behaviour. These findings suggest that mtCB1 receptor signalling can directly regulate astroglial glucose metabolism to fine-tune neuronal activity and behaviour in mice.
原文連結:https://www.nature.com/articles/s41586-020-2470-y
中文摘要
大約75%的乳腺癌細胞會表達雌激素和/或孕激素受體。內分泌療法對這些激素受體陽性的腫瘤組織通常是有效的,但腫瘤的原發性和獲得性藥物耐受限制了其長期療效。本研究發現,在激素受體陽性的乳腺癌小鼠模型中,定期禁食或模擬禁食飲食可降低血液循環中的IGF1、胰島素和瘦素水平,並上調EGR1和PTEN抑制AKT-mTOR信號通路,從而提高了內分泌療法藥物他莫昔芬和氟維司群的藥效。當氟維司群與帕博西尼(一種周期蛋白依賴性激酶CDK4/6的抑制劑)聯合使用,同時輔以周期性的模擬禁食飲食,可以持久抑制腫瘤生長,並逆轉腫瘤對藥物的獲得性耐藥性。此外,禁食和模擬禁食飲食都可以預防他莫昔芬誘導的子宮內膜增生。同樣地,在激素受體陽性的乳腺癌患者中,給予雌激素治療,輔以模擬禁食飲食引起的代謝變化與小鼠中觀察到的現象類似,包括胰島素、瘦素和IGF1水平的降低,且後兩種激素長期保持在低水平狀態。在小鼠上,這些長期效應與長期抗癌活性有關。這些結果支持進一步的臨床研究,即針對激素受體陽性的乳腺癌,模擬禁食飲食可以作為雌激素療法的輔助手段。
模擬禁食飲食(Fasting Mimicking Diet,簡稱 FMD),一種周期性/間歇性禁食的飲食方案,用來模擬連續禁食引起的生理變化。該飲食模式的發明者就是該篇文章的共同通訊作者Valter Longo 教授。
過多的蛋白質/胺基酸和糖類會激活很多營養感知相關通路(包括 mTOR、生長激素、 IGF-1,胰島素等信號通路),在衰老和相關疾病的發生發展中發揮著關鍵作用,而熱量限制可抑制這些通路的激活。因此,適當減少飲食中的蛋白質和糖類,是 FMD 的核心元素。通過改變飲食的成分和熱量,來模擬熱量限制引起的變化,從而激活機體自身的多種保護性機制。
近年來,已有多項研究表明FMD具有改善健康,促進長壽的潛力。在小鼠中,FMD可減少肥胖和內臟脂肪的積累,降低癌症和炎症性疾病的發生率,改善免疫和認知功能,延長壽命。FMD 還可在多發性硬化症(一種自身免疫性神經疾病)小鼠模型中降低炎症、促進髓鞘再生;也證實了化療聯合FMD可增加特定免疫細胞,延緩乳腺癌和黑色素瘤的發生發展。2017 年Cell上發表研究表明,FMD可促進胰島β細胞再生,通過細胞重編程逆轉糖尿病。因此,在本文中
,Nencioni教授聯合Longo教授團隊再次重磅發現周期性的FMD可以通過降低生長因子的水平來增強激素治療藥物的抗腫瘤效果,並可作為臨床上乳腺癌內分泌治療的輔助手段。1. Longo, V. D et al. Cell Metab. 2016;
2. Brandhorst S et al. Adv Nutr. 2019;
3. Brandhorst S et al. Cell Metab. 2015;
4. Choi IY et al. Cell Rep. 2016;
5. Di Biase S et al. Cancer Cell. 2016;
6. Cheng CW. Cell. 2017.
Fasting-mimicking diet and hormone therapy induce breast cancer regression
發表單位:Department of Internal Medicine and Medical Specialties, University of Genoa
PI:Alessio Nencioni,
一作:Irene Caffa
Abstract
Approximately 75% of all breast cancers express the oestrogen and/or progesterone receptors. Endocrine therapy is usually effective in these hormone-receptor-positive tumours, but primary and acquired resistance limits its long-term benefit. Here we show that in mouse models of hormone-receptor-positive breast cancer, periodic fasting or a fasting-mimicking diet enhances the activity of the endocrine therapeutics tamoxifen and fulvestrant by lowering circulating IGF1, insulin and leptin and by inhibiting AKT–mTOR signalling via upregulation of EGR1 and PTEN. When fulvestrant is combined with palbociclib (a cyclin-dependent kinase 4/6 inhibitor), adding periodic cycles of a fasting-mimicking diet promotes long-lasting tumour regression and reverts acquired resistance to drug treatment. Moreover, both fasting and a fasting-mimicking diet prevent tamoxifen-induced endometrial hyperplasia. In patients with hormone-receptor-positive breast cancer receiving oestrogen therapy, cycles of a fasting-mimicking diet cause metabolic changes analogous to those observed in mice, including reduced levels of insulin, leptin and IGF1, with the last two remaining low for extended periods. In mice, these long-lasting effects are associated with long-term anti-cancer activity. These results support further clinical studies of a fasting-mimicking diet as an adjuvant to oestrogen therapy in hormone-receptor-positive breast cancer.
原文連結:https://www.nature.com/articles/s41586-020-2502-7
5. 瘦素-BDNF通路調控脂肪組織的交感神經分布中文摘要
瘦素基因突變(ob)會導致重度肥胖等代謝性疾病以及脂肪組織產熱和脂解缺陷。這些脂肪組織的功能由交感神經系統調控,然而,這些與交感神經相關的代謝異常,其機理目前仍不清楚。此外,通過長期瘦素給藥可恢復脂肪組織的功能異常,但其分子機制也並未闡明。本研究發現在ob/ob小鼠與飲食誘導的瘦素抵抗肥胖小鼠中,皮下白色脂肪組織與棕色脂肪組織中的交感神經分布顯著減少。而對ob/ob小鼠長期瘦素給藥後發現其脂肪組織中的交感神經分布有所恢復,且這種恢復對於脂肪組織的功能恢復也是必要的。瘦素通過影響下丘腦弓狀核中的AgRP(刺鼠相關肽)神經元和POMC(阿黑皮素原)神經元調控交感神經分布,敲除這兩種神經元中任意一種神經元的瘦素受體編碼基因都會導致脂肪組織中交感神經分布減少。而這兩種神經元是通過下丘腦室旁核中表達腦源性神經因子的神經元(BDNFPVH)發揮功能。BDNFPVH缺失會抑制瘦素對神經分布的調控。這些數據表明瘦素信號可通過自上而下的神經通路調控脂肪組織中交感神經可塑性,這一機制對於維持機體能量穩態起重要作用。
Leptin是一種主要由白色脂肪組織分泌的激素,可作用於中樞神經系統的瘦素受體,調控生物的行為及新陳代謝。Leptin含量一般與脂肪組織體積相關,可反應體內脂肪含量變化,並通過負反饋迴路調節脂肪組織質量。它可以作用於下丘腦的AgRP神經元和POMC神經元(這兩類神經元與調節代謝,控制食慾相關,AgRP神經元起促進食慾作用而POMC神經元起抑制食慾作用),一方面抑制動物食慾調節動物攝食行為,另一方面作用於交感神經系統,促進能量消耗,從而維持脂肪組織的穩定。然而,由於長期保持較高的瘦素水平會導致下丘腦瘦素抵抗,因此利用瘦素來治療肥胖病仍然存在局限性。1994年Friedman教授團隊率先克隆了Leptin基因。二十多年來,儘管人們已經對瘦素如何通過調控交感神經促進脂肪分解利用有了一定程度的認識,但具體的機制仍不清楚。而在本研究中Friedman教授團隊發現了瘦素調控的下遊神經元BDFNPHVH,闡明了瘦素調控脂肪組織中交感神經分布的具體通路,為直接靶向瘦素通路下遊神經元治療肥胖病提供了可能。
1. Friedman JM et al. Nature. 1998
2. Friedman JM et al. Nat Metab. 2019
A leptin–BDNF pathway regulating sympathetic innervation of adipose tissue
發表單位:Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University
PI:Jeffrey Friedman,
一作:Putianqi Wang
Abstract
Mutations in the leptin gene (ob) result in a metabolic disorder that includes severe obesity, and defects in thermogenesis and lipolysis, both of which are adipose tissue functions regulated by the sympathetic nervous system. However, the basis of these sympathetic-associated abnormalities remains unclear. Furthermore, chronic leptin administration reverses these abnormalities in adipose tissue, but the underlying mechanism remains to be discovered. Here we report that ob/ob mice, as well as leptin-resistant diet-induced obese mice, show significant reductions of sympathetic innervation of subcutaneous white and brown adipose tissue. Chronic leptin treatment of ob/ob mice restores adipose tissue sympathy etic innervation, which in turn is necessary to correct the associated functional defects. The effects of leptin on innervation are mediated via agouti-related peptide and pro-opiomelanocortin neurons in the hypothalamic arcuate nucleus. Deletion of the gene encoding the leptin receptor in either population leads to reduced innervation in fat. These agouti-related peptide and pro-opiomelanocortin neurons act via brain-derived neurotropic factor-expressing neurons in the paraventricular nucleus of the hypothalamus (BDNFPVH). Deletion of BDNFPVH blunts the effects of leptin on innervation. These data show that leptin signalling regulates the plasticity of sympathetic architecture of adipose tissue via a top-down neural pathway that is crucial for energy homeostasis.
原文連結:https://www.nature.com/articles/s41586-020-2527-y
φ(≧ω≦*)♪
喜歡我們嗎?點擊下方「閱讀原文」關注我們吧~
๑乛㉨乛๑ ↓
更多精彩內容,點擊下方「往期推薦」
長按識別二維碼
關注我們,精彩不斷
了解更多科研知識和進展