Chen, Y; Smith, MR; Thirumalai, K; Zychlinsky, A. A bacterial invasin induces macrophage apoptosis by binding directly to ICE.
The EMBO journal. 1996-08-01, 15 (15): 3853–60[2020-01-18]. PMID 8670890
Mathan, MM; Mathan, VI. Morphology of rectal mucosa of patients with shigellosiReviews of infectious diseases.
NaN,. 13 Suppl 4: S314–8 [2020-01-18]. PMID 2047656.
doi:10.1093/clinids/13.supplement_4.s314.
Zychlinsky, A; Prevost, MC; Sansonetti, PJ. Shigella flexneri induces apoptosis in infected macrophages.
Nature. 1992-07-09, 358 (6382): 167–9 [2020-01-18].
PMID 1614548. doi:10.1038/358167a0
Miao, EA; Leaf, IA; Treuting, PM; Mao, DP; Dors, M; Sarkar, A; Warren, SE; Wewers, MD; Aderem, A. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria.
Nature immunology. 2010-12, 11 (12): 1136–42 [2020-01-18].
PMID 21057511. doi:10.1038/ni.1960
Cookson, BT; Brennan, MA. Pro-inflammatory programmed cell death.. Trends in microbiology. 2001-03, 9 (3): 113–4 [2020-01-18].
PMID 11303500. doi:10.1016/s0966-842x(00)01936-3
Zheng, F; Xing, S; Gong, Z; Xing, Q. NLRP3 inflammasomes show high expression in aorta of patients with atherosclerosis.. Heart, lung & circulation. 2013-09, 22 (9): 746–50[2020-01-18].
PMID 23462287. doi:10.1016/j.hlc.2013.01.012
Ding, J; Wang, K; Liu, W; She, Y; Sun, Q; Shi, J; Sun, H; Wang, DC; Shao, F. Pore-forming activity and structural autoinhibition of the gasdermin family.
Nature. 2016-07-07, 535(7610): 111–6 [2020-01-18].
PMID 27281216. doi:10.1038/nature18590
Hilbi, H; Chen, Y; Thirumalai, K; Zychlinsky, A. The interleukin 1beta-converting enzyme, caspase 1, is activated during Shigella flexneri-induced apoptosis in human monocyte-derived macrophages.
Infection and immunity. 1997-12, 65 (12): 5165–70 [2020-01-18].
PMID 9393811
Hilbi, H; Moss, JE; Hersh, D; Chen, Y; Arondel, J; Banerjee, S; Flavell, RA; Yuan, J; Sansonetti, PJ; Zychlinsky, A. Shigella-induced apoptosis is dependent on caspase-1 which binds to IpaB.
The Journal of biological chemistry. 1998-12-04, 273 (49): 32895–900 [2020-01 18].
PMID 9830039. doi:10.1074/jbc.273.49.32895
Danelishvili, L; Bermudez, LE. Analysis of pyroptosis in bacterial infection.
Methods in molecular biology (Clifton, N.J.). 2013, 1004: 67–73 [2020-01-18].
PMID 23733570. doi:10.1007/978-1-62703-383-1_6
Miao, EA; Rajan, JV; Aderem, A. Caspase-1-induced pyroptotic cell death.
Immunological reviews. 2011-09, 243 (1): 206–14 [2020-01-19].
PMID 21884178. doi:10.1111/j.1600-065X.2011.01044.x.
Cheung, KT; Sze, DM; Chan, KH; Leung, PH. Involvement of caspase-4 in IL-1 beta production and pyroptosis in human macrophages during dengue virus infection.
Immunobiology. NaN-NaN, 223 (4-5): 356–364 [2020-01-19].
PMID 29113699. doi:10.1016/j.imbio.2017.10.044
Xu, YJ; Zheng, L; Hu, YW; Wang, Q. Pyroptosis and its relationship to atherosclerosis.
Clinica chimica acta; international journal of clinical chemistry. 2018-01, 476: 28–37[2020-01-19].
PMID 29129476. doi:10.1016/j.cca.2017.11.005
Jorgensen, I; Miao, EA. Pyroptotic cell death defends against intracellular pathogens.
Immunological reviews. 2015-05, 265 (1): 130–42 [2020-01-19].
PMID 25879289. doi:10.1111/imr.12287.
DiPeso, Lucian; Ji, Daisy X; Vance, Russell E; Price, Jordan V. Cell death and cell lysis are separable events during pyroptosis.
Cell Death Discovery. 2017-11-13, 3 (1) [2020-01-19].
doi:10.1038/cddiscovery.2017.70.
Shi, J; Gao, W; Shao, F. Pyroptosis: Gasdermin-Mediated Programmed Necrotic Cell Death.
Trends in biochemical sciences. 2017-04, 42 (4): 245–254 [2020-01-18].
PMID 27932073. doi:10.1016/j.tibs.2016.10.004
Qiu, S; Liu, J; Xing, F. 'Hints' in the killer protein gasdermin D: unveiling the secrets of gasdermins driving cell death.
Cell death and differentiation. 2017-04, 24 (4): 588–596[2020-01-18].
PMID 28362726. doi:10.1038/cdd.2017.24
Liu, X; Lieberman, J. A Mechanistic Understanding of Pyroptosis: The Fiery Death Triggered by Invasive Infection.
. Advances in immunology. 2017, 135: 81–117 [2020-01-18].
PMID 28826530. doi:10.1016/bs.ai.2017.02.002
Aglietti, RA; Dueber, EC. Recent Insights into the Molecular Mechanisms Underlying Pyroptosis and Gasdermin Family Functions.
. Trends in immunology. 2017-04, 38 (4): 261–271 [2020-01-18].
PMID 28196749doi:10.1016/j.it.2017.01.003
Jiménez Fernández, D; Lamkanfi, M. Inflammatory caspases: key regulators of inflammation and cell death.
Biological chemistry. 2015-03, 396 (3): 193–203 [2020-01-18].
PMID 25389992. doi:10.1515/hsz-214-0253
Kawai, T; Akira, S. TLR signaling.
Cell death and differentiation. 2006-05, 13 (5): 816–25[2020-01-20].
PMID 16410796. doi:10.1038/sj.cdd.4401850
Franchi, L; Warner, N; Viani, K; Nuñez, G. Function of Nod-like receptors in microbial recognition and host defense.. Immunological reviews. 2009-01, 227 (1): 106–28[2020-01-20].
PMID 19120480. doi:10.1111/j.1600-065X.2008.00734.x
Suzuki, T; Franchi, L; Toma, C; Ashida, H; Ogawa, M; Yoshikawa, Y; Mimuro, H; Inohara, N; Sasakawa, C; Nuñez, G. Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages.
PLoS pathogens. 2007-08-10, 3 (8): e111 [2020-01-20]. PMID 17696608.
doi:10.1371/journal.ppat.0030111
Kufer, TA; Sansonetti, PJ. Sensing of bacteria: NOD a lonely job.. Current opinion in microbiology. 2007-02, 10 (1): 62–9 [2020-01-20]. PMID 17161646.
doi:10.1016/j.mib.2006.11.003
跳轉至:Davis, BK; Wen, H; Ting, JP. The inflammasome NLRs in immunity, inflammation, and associated diseases.. Annual review of immunology. 2011, 29: 707–35 [2020-01-19]. PMID 21219188. doi:10.1146/annurev-immunol-031210-101405.[永久失效連結]
Mj, Sáez-Lara; C, Robles-Sanchez; Fj, Ruiz-Ojeda; J, Plaza-Diaz; A, Gil. Effects of Probiotics and Synbiotics on Obesity, Insulin Resistance Syndrome, Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease: A Review of Human Clinical Trials.
International journal of molecular sciences. 2016-06-13 [2020-01-19].
PMID 27304953
Rheinheimer, J; de Souza, BM; Cardoso, NS; Bauer, AC; Crispim, D. Current role of the NLRP3 inflammasome on obesity and insulin resistance: A systematic review.
Metabolism: clinical and experimental. 2017-09, 74: 1–9 [2020-01-19]. PMID 28764843.
doi:10.1016/j.metabol.2017.06.002
Vandanmagsar, B; Youm, YH; Ravussin, A; Galgani, JE; Stadler, K; Mynatt, RL; Ravussin, E; Stephens, JM; Dixit, VD. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance.
Nature medicine. 2011-02, 17 (2): 179–88 [2020-01-19].
PMID 21217695. doi:10.1038/nm.2279.
McGillicuddy, FC; Harford, KA; Reynolds, CM; Oliver, E; Claessens, M; Mills, KH; Roche, HM. Lack of interleukin-1 receptor I (IL-1RI) protects mice from high-fat diet-induced adipose tissue inflammation coincident with improved glucose homeostasis.
Diabetes. 2011-06, 60(6): 1688–98 [2020-01-19].
PMID 21515850. doi:10.2337/db10-1278
Feng, H; Gu, J; Gou, F; Huang, W; Gao, C; Chen, G; Long, Y; Zhou, X; Yang, M; Liu, S; Lü, S; Luo, Q; Xu, Y. High Glucose and Lipopolysaccharide Prime NLRP3 Inflammasome via ROS/TXNIP Pathway in Mesangial Cells.
Journal of diabetes research. 2016, 2016: 6973175[2020-01-18].
PMID 26881256. doi:10.1155/2016/6973175
Fu, Y; Wu, N; Zhao, D. Function of NLRP3 in the Pathogenesis and Development of Diabetic Nephropathy.
Medical science monitor : international medical journal of experimental and clinical research. 2017-08-11, 23: 3878–3884 [2020-01-18].
PMID 28798291. doi:10.12659/msm.903269.
Volpe, CM; Anjos, PM; Nogueira-Machado, JA. Inflammasome as a New Therapeutic Target for Diabetic Complications.
Recent patents on endocrine, metabolic & immune drug discovery. 2016, 10 (1): 56–62 [2020-01-18].
PMID 26899852. doi:10.2174/1872214810666160219163314
Camell, C; Goldberg, E; Dixit, VD. Regulation of Nlrp3 inflammasome by dietary metabolites.
Seminars in immunology. 2015-09, 27 (5): 334–42 [2020-03-26]. PMID 26776831.
doi:10.1016/j.smim.2015.10.004
Neven, B; Prieur, AM; Quartier dit Maire, P. Cryopyrinopathies: update on pathogenesis and treatment.
Nature clinical practice. Rheumatology. 2008-09, 4 (9): 481–9 [2020-01-19].
PMID 18665151. doi:10.1038/ncprheum0874
Church, LD; Cook, GP; McDermott, MF. Primer: inflammasomes and interleukin 1beta in inflammatory disorders.
Nature clinical practice. Rheumatology. 2008-01, 4 (1): 34–42[2020-01-19].
PMID 18172447. doi:10.1038/ncprheum0681
Doitsh, Gilad; Galloway, Nicole L. K.; Geng, Xin; Yang, Zhiyuan; Monroe, Kathryn M.; Zepeda, Orlando; Hunt, Peter W.; Hatano, Hiroyu; Sowinski, Stefanie; Muñoz-Arias, Isa; Greene, Warner C. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection.
Nature. 2014, 505(7484): 509–14.
Bibcode:2014Natur.505..509D. PMC 4047036. PMID 24356306. doi:10.1038/nature12940.
Monroe, K. M.; Yang, Z; Johnson, J. R.; Geng, X; Doitsh, G; Krogan, N. J.; Greene, W. C. IFI16 DNA sensor is required for death of lymphoid CD4 T cells abortively infected with HIV.
Science. 2014, 343 (6169): 428–32.
Bibcode:2014Sci...343..428M. PMC 3976200. PMID 24356113. doi:10.1126/science.1243640.
Kuida, K; Lippke, J. A.; Ku, G; Harding, M. W.; Livingston, D. J.; Su, M. S.; Flavell, R. A. Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme.
Science. 1995, 267 (5206): 2000–3.
Bibcode:1995Sci...267.2000K. PMID 7535475. doi:10.1126/science.7535475.
Li, P; Allen, H; Banerjee, S; Franklin, S; Herzog, L; Johnston, C; McDowell, J; Paskind, M; Rodman, L; Salfeld, J. Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock.
Cell. 1995, 80 (3): 401–11.
PMID 7859282. doi:10.1016/0092-8674(95)90490-5.