【TED演講】保持河流清潔的鹽循環經濟(中英字幕+演講稿)

2021-02-28 TED超級演講家

Growing up in northern Wisconsin,

I've naturally developed a connection

to the Mississippi River.

When I was little,

my sister and I would have contests

to see who could spell

"M-i-s-s-i-s-s-i-p-p-i" the fastest.

When I was in elementary school,

I got to learn about the early explorers

and their expeditions,

Marquette and Joliet, and how they used

the Great Lakes and the Mississippi River

and its tributaries

to discover the Midwest,

and to map a trade route

to the Gulf of Mexico.

In graduate school,

I was fortunate to have

the Mississippi River

outside my research laboratory window

at the University of Minnesota.

During that five-year period,

I got to know the Mississippi River.

I got to know its temperamental nature

and where it would flood

its banks at one moment,

and then shortly thereafter,

you would see its dry shorelines.

Today, as a physical organic chemist,

I'm committed to use my training

to help protect rivers,

like the Mississippi,

from excessive salt

that can come from human activity.

Because, you know,

salt is something that can contaminate

freshwater rivers.

And freshwater rivers,

they have only salt levels of .05 percent.

And at this level, it's safe to drink.

But the majority of the water

on our planet is housed in our oceans,

and ocean water has a salinity level

of more than three percent.

And if you drank that,

you'd be sick very quick.

So, if we are to compare

the relative volume of ocean water

to that of the river water

that's on our planet,

and let's say we are able

to put the ocean water

into an Olympic-size swimming pool,

then our planet's river water

would fit in a one-gallon jug.

So you can see it's a precious resource.

But do we treat it

like a precious resource?

Or rather, do we treat it

like that old rug

that you put in your front doorway

and wipe your feet off on it?

Treating rivers like that old rug

has severe consequences.

Let's take a look.

Let's see what just one teaspoon

of salt can do.

If we add one teaspoon of salt

to this Olympic-size

swimming pool of ocean water,

the ocean water stays ocean water.

But if we add that same

one teaspoon of salt

to this one-gallon jug

of fresh river water,

suddenly, it becomes too salty to drink.

So the point here is,

because rivers, the volume is so small

compared to the oceans,

it is especially vulnerable

to human activity,

and we need to take care to protect them.

So recently, I surveyed the literature

to look at the river health

around the world.

And I fully expected to see

ailing river health

in regions of water scarcity

and heavy industrial development.

And I saw that

in northern China and in India.

But I was surprised

when I read a 2018 article

where there's 232 river-sampling sites

sampled across the United States.

And of those sites,

37 percent had increasing salinity levels.

What was more surprising

is that the ones

with the highest increases

were found on the east part

of the United States,

and not the arid southwest.

The authors of this paper postulate

that this could be due

to using salt to deice roads.

Potentially, another source of this salt

could come from salty

industrial wastewaters.

So as you see, human activities

can convert our freshwater rivers

into water that's more like our oceans.

So we need to act and do something

before it's too late.

And I have a proposal.

We can take a three-step

river-defense mechanism,

and if industrial-water users

practice this defense mechanism,

we can put our rivers

in a much safer position.

This involves, number one,

extracting less water from our rivers

by implementing water recycle

and reuse operations.

Number two,

we need to take the salt

out of these salty industrial wastewaters

and recover it and reuse it

for other purposes.

And number three,

we need to convert salt consumers,

who currently source our salt from mines

into salt consumers that source our salt

from recycled salt sources.

This three-part defense mechanism

is already in play.

This is what northern China

and India are implementing

to help to rehabilitate the rivers.

But the proposal here

is to use this defense mechanism

to protect our rivers,

so we don't need to rehabilitate them.

And the good news is,

we have technology that can do this.

It's with membranes.

Membranes that can separate

salt and water.

Membranes have been around

for a number of years,

and they're based on polymeric materials

that separate based on size,

or they can separate based on charge.

The membranes that are used

to separate salt and water

typically separate based on charge.

And these membranes

are negatively charged,

and help to repel the negatively

charged chloride ions

that are in that dissolved salt.

So, as I said, these membranes

have been around for a number of years,

and currently, they are purifying

25 million gallons of water every minute.

Even more than that, actually.

But they can do more.

These membranes are based

under the principle of reverse osmosis.

Now osmosis is this natural process

that happens in our bodies --

you know, how our cells work.

And osmosis is where you have two chambers

that separate two levels

of salt concentration.

One with low salt concentration

and one with high salt concentration.

And separating the two chambers

is the semipermeable membrane.

And under the natural osmosis process,

what happens is the water naturally

transports across that membrane

from the area of low salt concentration

to the area of high salt concentration,

until an equilibrium is met.

Now reverse osmosis,

it's the reverse of this natural process.

And in order to achieve this reversal,

what we do is we apply a pressure

to the high-concentration side

and in doing so, we drive the water

the opposite direction.

And so the high-concentration side

becomes more salty,

more concentrated,

and the low-concentration side

becomes your purified water.

So using reverse osmosis,

we can take an industrial wastewater

and convert up to 95 percent of it

into pure water,

leaving only five percent

as this concentrated salty mixture.

Now, this five percent

concentrated salty mixture

is not waste.

So scientists have also

developed membranes

that are modified to allow

some salts to pass through

and not others.

Using these membranes,

which are commonly referred to

as nanofiltration membranes,

now this five percent

concentrated salty solution

can be converted

into a purified salt solution.

So, in total, using reverse osmosis

and nanofiltration membranes,

we can convert industrial wastewater

into a resource of both water and salt.

And in doing so,

achieve pillars one and two

of this river-defense mechanism.

Now, I've introduced this

to a number of industrial-water users,

and the common response is,

"Yeah, but who is going to use my salt?"

So that's why pillar number three

is so important.

We need to transform folks

that are using mine salt

into consumers of recycled salt.

So who are these salt consumers?

Well, in 2018 in the United States,

I learned that 43 percent of the salt

consumed in the US

was used for road salt deicing purposes.

Thirty-nine percent

was used by the chemical industry.

So let's take a look

at these two applications.

So, I was shocked.

In the 2018-2019 winter season,

one million tons of salt

was applied to the roads

in the state of Pennsylvania.

One million tons of salt is enough

to fill two-thirds

of an Empire State Building.

That's one million tons of salt

mined from the earth,

applied to our roads,

and then it washes off

into the environment and into our rivers.

So the proposal here

is that we could at least

source that salt from a salty

industrial wastewater,

and prevent that

from going into our rivers,

and rather use that to apply to our roads.

So at least when the melt happens

in the springtime

and you have this high-salinity runoff,

the rivers are at least

in a better position

to defend themselves against that.

Now, as a chemist,

the opportunity though

that I'm more psyched about

is the concept of introducing

circular salt into the chemical industry.

And the chlor-alkali industry is perfect.

Chlor-alkali industry

is the source of epoxies,

it's the source of urethanes and solvents

and a lot of useful products

that we use in our everyday lives.

And it uses sodium chloride salt

as its key feed stack.

So the idea here is,

well, first of all,

let's look at linear economy.

So in a linear economy,

they're sourcing that salt from a mine,

it goes through this chlor-alkali process,

made into a basic chemical,

which then can get converted

into another new product,

or a more functional product.

But during that conversion process,

oftentimes salt is regenerated

as the by-product,

and it ends up

in the industrial wastewater.

So, the idea is that we can

introduce circularity,

and we can recycle the water and salt

from those industrial wastewater streams,

from the factories,

and we can send it to the front end

of the chlor-alkali process.

Circular salt.

So how impactful is this?

Well, let's just take one example.

Fifty percent of the world's

production of propylene oxide

is made through the chlor-alkali process.

And that's a total of about five million

tons of propylene oxide

on an annual basis, made globally.

So that's five million tons of salt

mined from the earth

converted through the chlor-alkali process

into propylene oxide,

and then during that process,

five million tons of salt

that ends up in wastewater streams.

So five million tons

is enough salt to fill

three Empire State Buildings.

And that's on an annual basis.

So you can see how circular salt

can provide a barrier

to our rivers from this excessive

salty discharge.

So you might wonder,

"Well, gosh, these membranes

have been around for a number of years,

so why aren't people implementing

wastewater reuse?

Well, the bottom line is,

it costs money to implement

wastewater reuse.

And second,

water in these regions is undervalued.

Until it's too late.

You know, if we don't plan

for freshwater sustainability,

there are some severe consequences.

You can just ask one of the world's

largest chemical manufacturers

who last year took

a 280-million dollar hit

due to low river levels

of the Rhine River in Germany.

You can ask the residents

of Cape Town, South Africa,

who experienced a year-over-year drought

drying up their water reserves,

and then being asked

not to flush their toilets.

So you can see,

we have solutions here, with membranes,

where we can provide pure water,

we can provide pure salt,

using these membranes, both of these,

to help to protect our rivers

for future generations.

Thank you.

(Applause)

 

我在威斯康辛北部長大,

 

很自然和密西西比河

發展出了一種連結。

 

我小時候,

 

我和我姐姐會比賽誰能先拼出

 

「M-i-s-s-i-s-s-i-p-p-i

(密西西比)」。

 

我讀小學時,

 

我學到了早期的探險家

以及他們的探險,

 

馬凱特和喬利埃特,以及他們

如何透用五大湖及密西西比河

 

和它的支流,來發現美國中西部,

 

並將到墨西哥灣的

貿易路線畫成地圖。

 

在讀研究所時,

 

我很幸運,密西西比河

 

就在我的研究實驗室窗外,

 

那是在明尼蘇達大學。

 

在那五年期間,我有機會

認識了密西西比河。

 

我了解了它的無常特質,

 

可能這一刻它會將河岸淹沒,

 

沒多久之後,

 

你又能看見乾燥的河岸線。

 

現今,身為物理有機化學家,

 

我致力於發揮我的訓練

 

來協助保護河流,像密西西比河,

 

避免因為人類活動造成

河流的鹽份過高。

 

因為,

 

鹽有可能會汙染淡水河流。

 

淡水河流的鹽份含量只有0.05%。

 

鹽份在這個範圍內的水

可以安心飲用。

 

但地球上大部分的水在海洋裡,

 

海洋的鹽度超過3%。

 

如果飲用海水,你很快就會生病。

 

所以,若要將地球上的海洋水量

 

和河流水量來做相對比較,

 

假設我們能把海洋的水放到

 

奧運標準尺寸的遊泳池裡,

 

那麼地球上的河流水量

就可以放入一加侖的罐子中。

 

不難理解,河水是很珍貴的資源。

 

但我們有把它們當作

珍貴的資源來對待嗎?

 

或者,我們對待它們的方式,

 

就像對待鋪在大門口

用來擦拭腳下塵土的老地毯?

 

把河流當作老地毯來對待,

會有嚴重的後果。

 

咱們來看看。

 

咱們來看看一茶匙的鹽巴

會有什麼影響。

 

如果我們在一個奧運

標準尺寸的遊泳池裝滿海水,

 

再加進一茶匙的鹽巴,

 

海水還是海水。

 

但如果我們把同樣一茶匙的鹽巴

 

加到裝滿河流淡水的

一加侖罐子中,

 

突然,整罐水就變得

太鹹而無法飲用了。

 

這裡的重點是,因為

 

相對於海洋,河流的水量太少了,

 

河流很容易受到人類活動影響,

 

我們必須要照顧、保護河流。

 

最近,我調查文獻以

 

了解全世界各地河流的健康。

 

我完全預期會在水源稀少

 

和重度工業開發的區域

看到生病的河流。

 

我的確在中國北部和印度看到了。

 

但讓我意外的是,

我讀到一篇2018 年的文章,

 

文中提到,在全美國有

232 個河流抽樣站點。

 

在美國各地對河流抽樣。

 

在那些站點中,

 

有37% 發現鹽度上升。

 

更讓人驚訝的是,

 

鹽度增加最多的站點

 

是在美國東部,

 

而不是乾旱的西南部。

 

這篇文章的作者推測

 

原因可能是當地使用鹽

來避免道路結冰。

 

這些鹽份的另一個可能來源

 

是含鹽的工業廢水。

 

如各位所見,人類活動

可以將淡水河流轉變成

 

更像是海水的水。

 

我們必須要在太遲之前採取行動。

 

我有一個提議。

 

我們可以採用一個

三步驟的河流防禦機制,

 

如果工業水的使用者

能採用這種防禦機制,

 

我們就能讓河流更安全。

 

這機制的內容包括,第一,

 

導入水回收和再利用的做法,

 

來減少從河流取水。

 

第二,

 

我們必須要鹽份

從工業廢水中取出,

 

把取出的鹽份再利用至其他地方。

 

第三,我們得要將目前

 

使用礦鹽的消費者轉變成

 

使用回收鹽的消費者。

 

這個三步驟的防禦機制

已經在進行中了。

 

北中國和印度正是採用這個機制

 

來協助河流恢復原狀。

 

但,我提出的提議

 

是要用這個防禦機制

來保護我們的河流,

 

讓我們根本不用將河流恢復原狀。

 

好消息是,我們有技術

可以做到這一點。

 

這項技術是用薄膜。

 

可以把鹽和水分離的薄膜。

 

薄膜在很多年前就有了,

 

採用的是聚合材料,

依據體積來做分離,

 

也可以依據電荷來做分離。

 

用來將鹽和水分離的薄膜

 

通常是根據電荷來做分離的。

 

這些薄膜本身帶有負電,

 

能協助排斥溶解的鹽中

 

帶負電的氯離子。

 

我剛才說過,這些薄膜

在幾年前就有了,

 

目前,

 

它們每分鐘能淨化

兩千五百萬加侖的水。

 

實際上甚至還更多。

 

但它們能做的不只如此。

 

這些薄膜是以逆滲透原理為基礎。

 

滲透是我們身體中

會發生的自然過程——

 

和我們細胞的運作有關。

 

滲透作用就是有兩個不同的空間,

 

將兩種不同鹽份濃度給區別開來。

 

一邊是低鹽份濃度,

 

另一邊是高鹽份濃度。

 

將兩個空間隔開的是

一片半透性的薄膜。

 

在自然的滲透過程中,

 

水會很自然地通過那片薄膜,

 

從低鹽份濃度的地方

到高鹽份濃度的地方,

 

直到兩邊的濃度達到平衡。

 

逆滲透作用則是逆轉這個自然過程。

 

為了達成逆轉,

 

我們要做的是施加壓力給

高鹽份濃度的那一邊,

 

這麼做就能讓水

往相反的方向行進。

 

高鹽份濃度的那一邊,

鹽份會變得更高,

 

濃度更高,

 

而低鹽份濃度的那一邊

就變成了淨化的水。

 

利用逆滲透,我們可以

 

把95% 的工業廢水轉換成純水,

 

只留下5% 高鹽份濃度的混合物。

 

這5% 高鹽份濃度的

混合物並不是廢物。

 

科學家也開發出一些

改造過的薄膜,

 

讓某些鹽可以通過,

 

但其他的鹽不行。

 

用這種薄膜,

 

也就是一般所謂的奈米過濾膜,

 

這5% 的高鹽份濃度溶液

 

就能被轉換成純化的鹽溶液。

 

所以,總的來說,

有逆滲透作用和奈米過濾膜,

 

我們就能把工業廢水轉換

 

成為水和鹽的資源。

 

這麼做,

 

就能達成這個河流防禦機制的

第一和第二根支柱。

 

我曾向一些工業用水使用者

介紹過這個機制,

 

通常得到的反應是:

 

「好,但,誰會要用我的鹽?」

 

這就是為什麼

第三根支柱這麼重要。

 

我們必須要將使用

礦鹽的消費者轉型

 

成為使用回收鹽的消費者。

 

所以,誰是這些鹽的消費者?

 

2018 年,在美國,

 

我發現美國消費的鹽當中有43%

 

是用在防止道路結冰的用途上。

 

39% 是化學業在使用。

 

所以,咱們來談談這兩種應用。

 

我很震驚。

 

2018 年到2019 年的冬季,

 

一百萬噸的鹽

 

被用在賓州的道路上。

 

一百萬噸的鹽足以

 

裝滿帝國大廈的三分之二。

 

也就是從地球開採出了

一百萬噸的鹽,

 

用在我們的道路上,

 

接著這些鹽就被衝刷掉,

進入我們的環境和河流。

 

所以我的提議是,我們至少可以

 

從含鹽的工業廢水中取得那些鹽,

 

避免這些鹽進入我們的河流,

 

把它們用在我們的道路上。

 

至少,在春季開始融冰時,

 

出現高鹽度徑流時,

 

至少河流的狀況還會

 

比較有抵禦的能力。

 

身為化學家,

 

比較會讓我興奮的機會,

 

是把循環鹽導入

化學產業的這個概念。

 

氯鹼業是個完美的對象。

 

氯鹼業是環氧樹脂的來源,

 

也是氨基鉀酸酯、溶劑,

 

以及我們日常生活中

許多實用產品的來源。

 

該產業使用氯化鈉鹽

當作它的主要進料。

 

所以,這裡的想法是,

首先,咱們先來談談線性經濟。

在線性經濟中,鹽的來源是鹽礦,

它們會經過氯鹼過程,

被製成基本的化學製品,

這些化學製品能被

轉換成其他新產品,

或者更有功能性的產品。

但在轉換的過程中,

 

通常,都會重新生成鹽,

可算是副產品,

 

這些鹽最後會進入工業廢水中。

 

所以,我的想法是導入循環,

 

我們可以從工業廢水當中、

 

從工廠回收水和鹽,

 

再把它們送到氯鹼過程的前端。

 

循環鹽。

 

這會有多大的影響?

 

咱們用一個例子來說明。

 

全世界生產出的環氧丙烷,有50%

 

是透過氯鹼過程製造出來的。

 

也就是全球每年總共

 

約五百萬噸的環氧丙烷。

 

也就是從地球開採出

五百萬噸的鹽,

 

透過氯鹼過程轉換成環氧丙烷,

 

接著,在那過程中,

 

五百萬噸的鹽最後

會進入到廢水中。

 

五百萬噸的鹽可以

裝滿三棟帝國大廈。

 

那還只是一年的量。

 

這樣大家就可以了解,

為什麼循環鹽

 

可以協助我們的河流

抵禦過多的鹽排放。

 

各位可能會納悶:

 

「啊,很多年前就有這些薄膜了,

 

為什麼大家不去做廢水再利用?

 

嗯,基本上,

 

做廢水再利用是要花錢的。

 

第二,

 

在這些區域,水的價值被低估了。

 

直到太遲了。

 

如果我們不規劃淡水永續性,

 

將會有一些嚴重的後果。

 

你可以問世界上最大的化學製造商,

 

去年,他們因為德國

萊茵河水位過低,

 

受到了兩億八千萬美金的衝擊。

 

你可以問南非開普敦的居民,

 

他們遇到一年比一年嚴重的乾旱,

讓儲存的水被用盡,

 

接著被要求不可以衝馬桶。

 

所以,各位能了解,

 

我們有使用薄膜的解決方案,

 

用這個方案可以提供純水,

 

可以提供純鹽,

 

用這些薄膜,兩者都能提供,

 

為未來的世代保護我們的河流。

 

謝謝。

 

(掌聲)

 

相關焦點

  • We Are All Fighters 首支抗肺炎英文勵志演講(中英字幕)
    今日分享:最近深圳美女學霸Jessica Liu創作的首支抗肺炎英文勵志演講視頻《We Are
  • TED演講精選:攝影專題(50部高清中文字幕合集)
    在TED演講中,Getty Images的創始人喬納森·克雷恩向我們展示了一些經典照片,他還告訴我們,那些讓人無法挪開目光,不可回溯的瞬間,對一代人的影響。http://www.ted.com/talks/jonathan_klein_photos_that_changed_the_world?
  • TED演講中英字幕:成為孩子堅定不移的支持者(視頻+演講稿)
    無字幕(聽力練習版)雙語演講稿I have spent my entire life either at the schoolhouse, on the way to the schoolhouse, or talking about what happens in the schoolhouse.
  • BBC紀錄片:當上帝說英語(中英字幕)
    字幕組功德無量!
  • 碧昂絲動人演講:別妥協,展示你的力量
    Youtube網站在線上舉辦了虛擬畢業典禮「Dear Class of 2020」,邀請了美國前總統歐巴馬及其夫人等眾多名人進行畢業演講。今天,普特君為大家推薦的演講是美國流行天后碧昂絲在「Dear Class of 2020」上的演講。碧昂絲獲得了24座葛萊美獎杯,但是她總共有46次沒有得獎。她表示不要覺得贏是理所應當,而是應該繼續努力投入事業,因為失敗可能比成功更多。
  • 乾貨:如何利用TED學英語
    那接下來就跟口語俠小編一起,看看怎樣高效的利用TED學習口語吧~首先,放上TED官網網址:http://www.ted.com,重點是無須翻牆~~使用前提: 選擇那種介於趣味性和流暢性之間的視頻,特別有趣的材料不會太平民化,用句不會太簡單,如果基礎不好,就會陷入不停停下來處理詞和句子的情況。
  • 演講稿:腳踏實地才能仰望星空
    我是演講稿範文,非常高興能夠來這裡參加「行在現在,贏在未來」主題演講比賽,我演講的題目是《腳踏實地才能仰望星空》。每個人心中都有一片屬於自己內心渴望的星空,我們用力踮腳,希望可以觸碰到這片星空,但任何一個走向未來的路都是需要我們腳踏實地才能夠到達的。腳踏實地才能夠仰望星空,當下行動才能夠迎接美好的未來!行在現在,贏在未來。
  • 演講稿:奮鬥的青春最美麗
    我是演講稿範文,非常榮幸能夠有這樣一次機會來到這裡跟大家分享關於「青春」的話題,我演講的題目是《奮鬥的青春最美麗》。每當我們談起青春,我們總認為那是一段最美的時光,在那段時光裡,我們敢愛敢恨敢於追逐夢想,不怕失敗,儘管會經歷失敗,也許會榮獲成功,但我們每一天都活成了最美的樣子,這就是青春的美麗。
  • 歐巴馬芝加哥告別演講:Yes We Can!(雙語字幕)
    美國東部時間2017年1月10日晚9點(即北京時間1月11日上午10點),美國第44任總統巴拉克·歐巴馬在芝加哥*向美國人民發表告別演講
  • 演講稿:我的成長
    我們仍舊要保持初心,繼續前行。同時也更要不忘初心,牢記使命。人生需要不停地繼續向前當然也需要階段性的總結,在這辭舊迎新之際,我也對我過去的工作進行相應的一些總結。其實,這一年以來我內心的感受就是:感謝。感謝這次工作經歷讓我學會了專業技能,感謝這裡每一個溫暖的人給我的幫助和照顧,感謝始終支持我的家人為我保駕護航,也感謝自己在這一年裡一直努力向前不斷成長。
  • TED英語演講 | 女權之路--我還在尋找答案
    戳藍字「TED名人演講」關注我們哦!
  • 第187期 忌日快樂 Happy Death Day 2017 電影 (有字幕/中英雙語字幕 兩個版本)
    不過提供了兩個版本,一個是沒有字幕的,一個是中英雙語字幕的!Enjoy!)連結:https://pan.baidu.com/s/1smAl2aD 密碼:l4t9
  • TED演講:如何利用晚餐時間教育孩子
    演講簡介點擊左下角「閱讀原文」,獲取完整演講稿日落西山宿,落花逐水飄有人說「世間所有的相遇,都是久別的重逢。」
  • 高齡圈粉美劇:《實習醫生格蕾》(1-14季中英MP4+1-10季英文MP3、中英劇本臺詞+萬字英語筆記)
    《實習醫生格蕾 》這部劇從2005年開始播出,至今已經播出14季,幾乎保持一年一季的播出進度,豆瓣評分每季九分上下。大多數美劇到了這個「年齡段」已經是垂垂老矣,《格蕾》卻時而冒出新芽兒。以醫學為題材,一方面是一群年輕實習醫生的奮鬥歷程,另一方面也帶著豐富的愛情元素,劇情幽默。
  • 「長壽」美劇:《豪斯醫生》全8季中英視頻+中英及純英劇本+英語筆記
    本篇微信主要包括如下內容:1、《豪斯醫生》1-8季中英視頻
  • 胡歌獲獎全英文演講,一個大寫的帥!(附視頻和雙語演講稿)
    胡歌日本獲「亞洲特別貢獻獎」 全程用英文演講11月4日,「亞洲電視劇研討會10周年紀念頒獎禮」今天在日本福岡舉行。演員胡歌和導演夏曉昀憑藉《大好時光》、《生活啟示錄》等電視劇榮獲「亞洲特別貢獻獎」。演講稿內容:Ladies and gentleman, good evening.I'm Huge come from China.It's my great honor to be here this amazing night.
  • N0.9-TED演講
    1、中文版TED演講視頻,了解演講大致意思。
  • TED演講:夫妻保持穩固性關係的秘籍!
    他們往往這樣問,「那麼,艾米麗,夫妻怎樣能保持穩固的性關係長達幾十年?」I'm a sex educator, which is why my friends ask me questions like this,and I am also a big nerd like my friends.
  • 好萊塢最帥的鑽石王老五自嘲演講,他的英文演講堪稱教科書經典(附演講稿)
    ❍關注我,你一定可以獲得❍① BBC英國史(15集全,中英雙語字幕)②科普紀錄片國家地理頻道《瘋狂實驗室》(20集全)③最值得看的2018美國名校畢業演講④14個TED視頻MP4+演講稿免費下載關注【英語口語屋】後,私信「福利」獲取哦~全部免費在2015年1月份舉行的金球獎頒獎典禮上,影星兼導演於一身的喬治 克魯尼(George Clooney)榮獲終身成就獎。
  • 怎麼轉事業風水 保持辦公室清潔
    保持辦公室清潔  一個人事業運要提升的話,一定要保持辦公室清潔,會容易讓人更加容易遇到簡單明了的事情,而且自己解決起來也是更加帶勁的,就會因此而帶給了一個人好的事業裡的前提和可能性