發表於 2019-09-13 10:57:00
雙極性電晶體(英語:bipolar transistor),全稱雙極性結型電晶體(bipolar junction transistor, BJT),俗稱三極體,是一種具有三個終端的電子器件,由三部分摻雜程度不同的半導體製成,電晶體中的電荷流動主要是由於載流子在PN結處的擴散作用和漂移運動。
這種電晶體的工作,同時涉及電子和空穴兩種載流子的流動,因此它被稱為雙極性的,所以也稱雙極性載流子電晶體。這種工作方式與諸如場效應管的單極性電晶體不同,後者的工作方式僅涉及單一種類載流子的漂移作用。兩種不同摻雜物聚集區域之間的邊界由PN結形成。
雙極性電晶體能夠放大信號,並且具有較好的功率控制、高速工作以及耐久能力,,所以它常被用來構成放大器電路,或驅動揚聲器、電動機等設備,並被廣泛地應用於航空航天工程、醫療器械和機器人等應用產品中。
雙極性電晶體工作原理
NPN型雙極性電晶體可以視為共用陽極的兩個二極體接合在一起。在雙極性電晶體的正常工作狀態下,基極-發射極結(稱這個PN結為「發射結」)處於正向偏置狀態,而基極-集電極(稱這個PN結為「集電結」)則處於反向偏置狀態。在沒有外加電壓時,發射結N區的電子(這一區域的多數載流子)濃度大於P區的電子濃度,部分電子將擴散到P區。同理,P區的部分空穴也將擴散到N區。這樣,發射結上將形成一個空間電荷區(也成為耗盡層),產生一個內在的電場,其方向由N區指向P區,這個電場將阻礙上述擴散過程的進一步發生,從而達成動態平衡。這時,如果把一個正向電壓施加在發射結上,上述載流子擴散運動和耗盡層中內在電場之間的動態平衡將被打破,這樣會使熱激發電子注入基極區域。在NPN型電晶體裡,基區為P型摻雜,這裡空穴為多數摻雜物質,因此在這區域電子被稱為「少數載流子」。
從發射極被注入到基極區域的電子,一方面與這裡的多數載流子空穴發生複合,另一方面,由於基極區域摻雜程度低、物理尺寸薄,並且集電結處於反向偏置狀態,大部分電子將通過漂移運動抵達集電極區域,形成集電極電流。為了儘量緩解電子在到達集電結之前發生的複合,電晶體的基極區域必須製造得足夠薄,以至於載流子擴散所需的時間短於半導體少數載流子的壽命,同時,基極的厚度必須遠小於電子的擴散長度(diffusion length,參見菲克定律)。在現代的雙極性電晶體中,基極區域厚度的典型值為十分之幾微米。需要注意的是,集電極、發射極雖然都是N型摻雜,但是二者摻雜程度、物理屬性並不相同,因此必須將雙極性電晶體與兩個相反方向二極體串聯在一起的形式區分開來。
雙極性電晶體發展應用
1947年12月,貝爾實驗室的約翰·巴丁、沃爾特·豪澤·布喇頓在威廉·肖克利的指導下共同發明了點接觸形式的雙極性電晶體。1948年,肖克利發明了採用結型構造的雙極性電晶體。在其後的大約三十年時間內,這種器件是製造分立元件電路和集成電路的不二選擇。
早期的電晶體是由鍺製造的。在1950年代和1960年代,鍺電晶體的使用多於矽電晶體。相對於矽電晶體,鍺電晶體的截止電壓更小,通常約0.2伏特,這使得鍺電晶體適用於某些應用場合。在電晶體的早期歷史中,曾有多種雙極性電晶體的製造方法被開發出來。
鍺電晶體的一個主要缺點是它容易產生熱失控。由於鍺的禁帶寬度較窄,並且要穩定工作則要求的溫度相對矽半導體更嚴,因此大多數現代的雙極性電晶體是由矽製造的。採用矽材料的另一個重要原因是矽在地球上的儲量比鍺豐富得多(僅次於氧)。
後來,人們也開始使用以砷化鎵為代表的化合物來製造半導體電晶體。砷化鎵的電子遷移率為矽的5倍,用它製造的電晶體能夠達到較高的工作頻率。此外,砷化鎵熱導率較低,有利於高溫下進行的加工。化合物電晶體通常可以應用於高速器件。
雙極性電晶體能夠提供信號放大,它在功率控制、模擬信號處理等領域有所應用。此外,由於基極-發射極偏置電壓與溫度、電流的關係已知,雙極性電晶體還可以被用來測量溫度。根據基極-發射極電壓與基極-發射極和集電極-發射極電流的對數關係,雙極性電晶體也能被用來計算對數或求自然對數的冪指數。
隨著人們對於能源問題的認識不斷加深,場效應管(如CMOS)技術憑藉更低的功耗,在數字集成電路中逐漸成為主流,雙極性電晶體在集成電路中的使用由此逐漸變少。但是應當看到,即使在現代的集成電路中,雙極性電晶體依然是一種重要的器件,市場上仍有大量種類齊全、價格低廉的電晶體產品可供選擇。與金屬氧化物半導體場效應電晶體(MOSFET,它是場效應管的一種,另一種為結型場效應管)相比,雙極性電晶體能提供較高的跨導和輸出電阻,並具有高速、耐久的特性,在功率控制方面能力突出。因此,雙極性電晶體依舊是組成模擬電路,尤其是甚高頻應用電路(如無線通信系統中的射頻電路)的重要配件。雙極性電晶體可以通過BiCMOS技術與和MOSFET製作在一塊集成電路上,這樣就可以充分利用兩者的優點(如雙極性電晶體的電流放大能力和場效應管的低功耗特點)
打開APP閱讀更多精彩內容
聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容圖片侵權或者其他問題,請聯繫本站作侵刪。 侵權投訴